Clustering

Duen Horng (Polo) Chau
Associate Professor
Associate Director, MS Analytics
Machine Learning Area Leader, College of Computing
Georgia Tech

Partly based on materials by Professors Guy Lebanon, Jeffrey Heer, John Stasko, Christos Faloutsos, Parishit Ram (GT PhD alum; IBM), Alex Gray
Clustering

The most common type of **unsupervised** learning

High-level idea: group **similar** things together

“**Unsupervised**” because clustering model is learned without any labeled examples
Applications of Clustering

- Find similar patients subgroups
 - e.g., in healthcare
- Finding groups of similar text documents (topic modeling)
- …
Clustering techniques you’ve got to know

K-means
Hierarchical Clustering
DBSCAN
K-means (the “simplest” technique)

Algorithm Summary

• We tell K-means the value of k (#clusters we want)

• **Randomly** initialize the k cluster “means” (“centroids”)

• **Assign** each item to the the cluster whose mean the item is closest to (so, we need a similarity function)

• **Update/recompute** the new “means” of all k clusters.

• If all items’ assignments do not change, **stop**.

YouTube video demo: https://youtu.be/IuRb3y8qKX4?t=3m4s
K-means What’s the catch?

How to decide k (a hard problem)?

• A few ways; best way is to evaluate with real data
 (https://www.ee.columbia.edu/~dpwe/papers/PhamDN05-kmeans.pdf)

Only locally optimal (vs global)

• Different initialization gives different clusters
 • How to “fix” this?
 • “Bad” starting points can cause algorithm to converge slowly

• Can work for relatively large dataset
 • Time complexity $O(d n \log n)$ per iteration
 (assumptions: $n \gg k$, dimension d is small)
 http://www.cs.cmu.edu/~./dpelleg/download/kmeans.ps
Hierarchical clustering

High-level idea: build a tree (hierarchy) of clusters
Ways to calculate distances between two clusters

Single linkage

- minimum of distance between clusters
- similarity of two clusters = similarity of the clusters’ most similar members

Complete linkage

- maximum of distance between clusters
- similarity of two clusters = similarity of the clusters’ most dissimilar members

Average linkage

- distance between cluster centers
Hierarchical clustering for large datasets?

• OK for small datasets (e.g., <10K items)
• Time complexity between $O(n^2)$ to $O(n^3)$ where n is the number of data items
• Not good for millions of items or more
• But great for understanding concept of clustering
DBSCAN

“Density-based spatial clustering with noise”
https://en.wikipedia.org/wiki/DBSCAN

Received “test-of-time award” at KDD’14 — an extremely prestigious award.

Only need two parameters:
1. “radius” epsilon
2. minimum number of points (e.g., 4) required to form a dense region

Yellow “border points” are density-reachable from red “core points”, but not vice-versa.
Interactive DBSCAN Demo

https://www.naftaliharris.com/blog/visualizing-dbscan-clustering/

Only need two parameters:
1. “radius” epsilon
2. minimum number of points (e.g., 4) required to form a dense region

Yellow “border points” are **density-reachable** from red “core points”, but not vice-versa.
You can use DBSCAN now.

http://scikit-learn.org/dev/auto_examples/cluster/plot_cluster_comparison.html#sphx-glr-auto-examples-cluster-plot-cluster-comparison-py
Visualizing Clusters
D3 has some built-in techniques

Visualizing **Topics** as Matrix

Termite: Visualization Techniques for Assessing Textual Topic Models
Jason Chuang, Christopher D. Manning, Jeffrey Heer. AVI 2012.
http://vis.stanford.edu/papers/termite
Visualizing **Topics** as Matrix

Termite: Visualization Techniques for Assessing Textual Topic Models
Jason Chuang, Christopher D. Manning, Jeffrey Heer. AVI 2012.
http://vis.stanford.edu/papers/termite
Termite: Topic Model Visualization

http://vis.stanford.edu/papers/termite

Using “Seriation”
Visualizing Graph Communities
(using colors)
Visualizing Graph Communities
(using colors and convex hulls)

Visualizing Graph Communities as Matrix

https://bost.ocks.org/mike/miserables/

Require good node ordering!

Les Misérables Co-occurrence
Visualizing Graph Communities as Matrix

Require good node ordering!

Fully-automated way: “Cross-associations”

http://www.cs.cmu.edu/~christos/PUBLICATIONS/kdd04-cross-assoc.pdf
Graph Partitioning

If you know, or want to, specify #communities, use **METIS**, the most popular graph partitioning tools

http://glaros.dtc.umn.edu/gkhome/views/metis