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What is Spa

http://spark.apache.org

Not a modified version of Hadoop

Separate, fast, MapReduce-like engine
» In-memory data storage for very fast iterative queries
» General execution graphs and powerful optimizations
» Up to 40x faster than Hadoop

Compatible with Hadoop’s storage APIs”

» Can read/write to any Hadoop-supported system,
including HDFS, HBase, SequencekFiles, etc.


http://spark.apache.org

What is Spark SQL?

(Formally called Shark)
Port of Apache Hive to run on Spark

Compatible with existing Hive data,
metastores, and queries (HiveQL, UDFs, etc)

Similar speedups of up to 40x



Project History

Spark project started in 2009 at UC Berkeley AMP lab,
open sourced 2010 lab

Became Apache Top-Level Project in Feb 2014
Shark/Spark SQL started summer 2011

Built by 250+ developers and people from 50 companies
Scale to 1000+ nodes in production

In use at Berkeley, Princeton, Klout, Foursquare, Conviva,
Quantifind, Yahoo! Research, ...

http://en.wikipedia.org/wiki/Apache_Spark



Why a New Programming Model?

MapReduce greatly simplified big data analysis

But as soon as it got popular, users wanted
more:

» More complex, multi-stage applications (e.g.
iterative graph algorithms and machine learning)
» More interactive ad-hoc queries



Why a New Programming Model?

MapReduce greatly simplified big data analysis

But as soon as it got popular, users wanted
more:

» More complex, multi-stage applications (e.g.
iterative graph algorithms and machine learning)
» More interactive ad-hoc queries

Require faster data sharing across parallel
jobs



Is MapReduce dead? Not really.

Google Dumps MapReduce in http://www.datacenterknowledge.com/archives/

2014/06/25/google-dumps-mapreduce-favor-new-

Favor of New Hyper-SCale hyper-scale-analytics-system/
Analytics System

http://www.reddit.com/r/compsci/comments/296aqgr/on_the_death_of mapreduce_at_google/

o
'.'.) reddlt COMPSCI | comments | related other discussions (3)

On the Death of Map-Reduce at Google. (te-paper-traii.org)
submitted 3 months ago by gkdhfjdjdhd
20 comments share

all 20 comments

sorted by: best v

[-] tazzy531 47 points 3 months ago
As an employee, I was surprised by this headline, considering I just ran some mapreduces this past week.

After digging further, this headline and article is rather inaccurate. 5
Cloud DataFlow is the external name for what is internally called Flume.
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Data Sharing in MapReduce
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Data Sharing in MapReduce

HDFS HDFS HDFS HDFS
read write read write

hﬂilll__a__ __%ﬁﬂiﬂlif_%’_ —> . ..

Input
HDFS query ’ result 1
read
query result 2
query > result 3
Input 4

(Slow due to replication, serialization, and disk ]
1O !




Data Sharing in Spark

one-time
processing

Input Distributed
memory



Data Sharing in Spark

one-time
processing 4

Distributed
memory

Input

[ 10-100x faster than network and disk




Spark Programming Model

Key idea: resilient distributed datasets (RDDs)

» Distributed collections of objects that can be cached
INn memory across cluster nodes

» Manipulated through various parallel operators

» Automatically rebuilt on failure

Interface
» Clean language-integrated APl in Scala
» Can be used interactively from Scala, Python console
» Supported languages: Java, Scala, Python, R



http://www.scala-lang.org/old/fag/4

Functional programming in D3: http://sleptons.blogspot.com/2015/01/functional-pro

Scala vs Java 8: http://kukuruku.co/hub/scala/java-8-vs-scala-the-difference-in-approaches-and-mutual-innovations

’scala DOCUMENTATION DOWNLOAD COMMUNITY CONTRIBUTE @ M

Object-Oriented Meets Functional

Have the best of both worlds. Construct elegant class
hierarchies for maximum code reuse and extensibility,
implement their behavior using higher-order functions.
Or anything in-between.

LEARN MORE

DOWNLOAD API DOCS


http://www.scala-lang.org/old/faq/4
http://www.scala-lang.org/old/faq/4
http://sleptons.blogspot.com/2015/01/functional-programming-d3js-good-example.html
http://kukuruku.co/hub/scala/java-8-vs-scala-the-difference-in-approaches-and-mutual-innovations

Example: Log Mining

Load error messages from a log into memory,
then interactively search for various patterns

http://ananthakumaran.in/2010/03/29/scala-underscore-magic.html
http://www.slideshare.net/normation/scala-dreaded
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Example: Log Mining

Load error messages from a log into memory,
then interactively search for various patterns
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Example: Log Mining

Load error messages from a log into memory,
then interactively search for various patterns

lines = spark.textFile(“hdfs://...”)

errors = lines.filter(_.startsWith("ERROR”))
messages = errors.map(_.split(\t’)(2))
cachedMsgs = messages.cache()

http://ananthakumaran.in/2010/03/29/scala-underscore-magiehtmi 11
http://www.slideshare.net/normation/scala-dreaded
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Example: Log Mining

Load error messages from a log into memory,
then interactively search for various patterns
lines = spark.textFile(“hdfs://...”)
errors = lines.filter(_.startsWith(“ERROR”))

messages = errors.map(_.split(\t’)(2))
cachedMsgs = messages.cache()

cachedMsgs.filter(_.contains(“foo”)).count EEE
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Load error messages from a log into memory,
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messages = errors.map(_.split(\t’)(2))
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.

http://ananthakumaran.in/2010/03/29/scala-underscore-mag
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Example: Log Mining

Load error messages from a log into memory,
then interactively search for various patterns

lines = spark.textFile(“hdfs://...”)

errors = lines.filter(_.startsWith("ERROR”))
messages = errors.map(_.split(\t’)(2))
cachedMsgs = messages.cache()

cachedMsgs.filter(_.contains(“foo”)).count
cachedMsgs.filter(_.contains(“bar”)).count

Result: full-text search of Wikipedia in
<1 sec (vs 20 sec for on-disk data)

http://www.slideshare.net/normation/scala-dreaded
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Example: Log Mining

Load error messages from a log into memory,
then interactively search for various patterns

lines = spark.textFile(“hdfs://...”)

errors = lines.filter(_.startsWith("ERROR”))
messages = errors.map(_.split(\t’)(2))
cachedMsgs = messages.cache()

cachedMsgs.filter(_.contains(“foo”)).count
cachedMsgs.filter(_.contains(“bar”)).count

Result: scaled to 1 TB data in 5-7 sec
(vs 170 sec for on-disk data)

http://www.slideshare.net/normation/scala-dreaded
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Fault Tolerance

RDDs track the series of transformations
used to build them (their lineage) to
recompute lost data

messages = textFile(...).filter(_.contains(“error”))

Eg .map(_.split(\t’')(2))

HadoopRDD FllteredRDD MappedRDD
path = hdfs://... func = _.contains(. func = _.split(..




Example: Logistic Regression

val data = spark.textFile(...).map(readPoint).cache()
var w = Vector.random(D)

for (i <- 1 to ITERATIONS) {
val gradient = data.map(p =>

(1/(1 +exp(-p.y*(wdotp.x)))-1) *p.y * p.x
).reduce(_ + _)
w -= gradient

}

printin("Final w: " + w)

13
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Logistic Regression Performance

4000 _ |
127 s / iteration
3000 \/
w Hadoop
k
2000 T\ Spar
1000 first iteration 174 s
further iterations 6 s
O i

1 5 10 20 30

Number of Iterations 14



Supported Operators

map
filter
groupBy

sort

join
leftOuterdoin

rightOuterdoin

reduce
count
reduceByKey
groupByKey
first

union

Cross

sample
cogroup
take
partitionBy
pipe

sSave



Spark SQL: Hive on Spark



Motivation

Hive is great, but Hadoop’s execution engine
makes even the smallest queries take
minutes

Scala is good for programmers, but many
data users only know SQL

Can we extend Hive to run on Spark?



Hive Architecture

CLI

Driver

SQL
Parser

Query
Optimizer

Physical Plan

Execution

MapReduce

HDFS

18



Spark SQL Architecture

Driver

SQL Physical Plan

Parser Execution

[Engle et al, SIGMOD 2012]



Using Spark SQL

CREATE TABLE mydata_cached AS SELECT ...

Run standard HiveQL on it, including UDFs

» A few esoteric features are not yet supported

Can also call from Scala to mix with Spark



Benchmark Query 1

SELECT * FROM grep WHERE field LIKE “%XYZ%’;

Shark (cached)

Shark

Hive

0 50 100 150 200 250

Execution Time (secs) 21



Benchmark Query 2

SELECT sourcelP, AVG(pageRank), SUM(adRevenue) AS earnings
FROM rankings AS R, userVisits AS V ON R.pageURL = V.destURL
WHERE V.visitDate BETWEEN ‘1999-01-01’ AND 2000-01-01’
GROUP BY V.sourcelP

ORDER BY earnings DESC

LIMIT 1;

Shark (cached)

0 100 200 300 400 500

Execution Time (secs) 22



iteration time (S)

Behavior with Not Enough RAM

100
75 68.8
58.1
50 - ﬁ
25
0 -
Cache disabled 25% 50% 75%  Fully cached

% of working set in memory 23



What’s Next?

Recall that Spark’s model was motivated by
two emerging uses (interactive and multi-
stage apps)

Another emerging use case that needs fast

data sharing is stream processing
» Track and update state in memory as events arrive
» Large-scale reporting, click analysis, spam filtering,
etc



Streaming Spark

Extends Spark to perform streaming computations

Runs as a series of small (~1 s) batch jobs,
keeping state in memory as fault-tolerant RDDs

Intermix seamlessly with batch and ad-hoc queries

map reduceByWindow

tweetStream T=1
flatMap(_.toLower.split)
.map(word => (word, 1)) L

.reduceByWindow(“5s”, _ + _) =1
SR £

[Zaharia et al, HotCloud 2012] 25
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map() vs flatMap()

The best explanation:

https://www.linkedin.com/pulse/difference-between-
map-flatmap-transformations-spark-pyspark-pandey

flatMap = map + flatten

26
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Streaming Spark

Extends Spark to perform streaming computations

Runs as a series of small (~1 s) batch jobs,
keeping state in memory as fault-tolerant RDDs

Intermix seamlessly with batch and ad-hoc queries

Result: can process 42 million records/second
(4 GB/s) on 100 nodes at sub-second latency

. J




Spark Streaming

Create and operate on RDDs from live data streams at set intervals

Kafka |
HDFS
Flume R
HDFS Sp Qr K Databases
ZerOMQ Streomlng Dashboards
Twitter
input data batches of batches of
stream Spark input data Spark processed data
Streaming Engine

Data is divided into batches for processing

Streams may be combined as a part of processing or analyzed with higher level
transforms



SPARK PLATFORM

Scala/Python/Java

. Spark Spark SQL Execution
Resource { YARN/Spark/Mesos

Management

Data

Standard FS/HDFS/CFS/S3 Storage




GraphX

Parallel graph processing

Extends RDD -> Resilient Distributed Property Graph

» Directed multigraph with properties attached to each vertex

and edge

Limited algorithms

» PageRank

» Connected Components

» Triangle Counts

Alpha component

Graph A



MLIib

Scalable machine learning library
Interoperates with NumPy

Available algorithms in 1.0
» Linear Support Vector Machine
(SVM)
» Logistic Regression
» Linear Least Squares
» Decision Trees
» Naive Bayes
» Collaborative Filtering with ALS
» K-means
» Singular Value Decomposition
» Principal Component Analysis
» Gradient Descent



MLIib (part of Spark 2.x

e Basic statistics
o summary statistics
o correlations
o stratified sampling
o hypothesis testing
o streaming significance testing
o random data generation
¢ (Classification and regression
o linear models (SVMs, logistic regression, linear regression)
©o naive Bayes
o decision trees
o ensembles of trees (Random Forests and Gradient-Boosted Trees)
o isotonic regression
e Collaborative filtering
o alternating least squares (ALS)

https://spark.apache.org/docs/latest/mllib-guide.html

Clustering
o k-means
o Gaussian mixture
o power iteration clustering (PIC)
latent Dirichlet allocation (LDA)
o bisecting k-means
o streaming k-means
Dimensionality reduction
o singular value decomposition (SVD)
o principal component analysis (PCA)
Feature extraction and transformation
Frequent pattern mining
o FP-growth
o association rules
o PrefixSpan
Evaluation metrics
PMML model export
Optimization (developer)
o stochastic gradient descent
o limited-memory BFGS (L-BFGS)

o]



