CSE6242 / CX4242: Data \& Visual Analytics

Graphs / Networks

Basics, how to build \& store graphs, laws, etc. Centrality, and algorithms you should know

Duen Horng (Polo) Chau

Associate Professor
Associate Director, MS Analytics
Machine Learning Area Leader, College of Computing
Georgia Tech

Partly based on materials by
Professors Guy Lebanon, Jeffrey Heer, John Stasko, Christos Faloutsos, Parishit Ram (GT PhD
alum; IBM), Alex Gray

Internet
 4 Billion Web Pages

Facebook 2 Billion Users

Citation Network 250 Million Articles

Many More

twitter 3
 Who-follows-whom (288 million users)
 amazon
 Who-buys-what (120 million users)
 atat cellphone network
 Who-calls-whom (100 million users)

Protein-protein interactions

200 million possible interactions in human genome

How to represent a graph?

Conceptually. Visually.
Programmatically.

How to Represent a Graph?

Visually

Adjacency matrix
Target node

		1	2	3	4
	1	0	1	3	0
Source	2	0	0	0	2
node	3	0	1	0	0
	4	0	0	0	0

Adjacency list
$1: 2,3$
$2: 4$
$3: 2$

2: 4
3: 2

Edge list

1, 2, 1
1, 3, 3
2, 4, 2
3, 2, 1

- most common distribution format
- sometimes painful to parse when edges/nodes have many columns (some are text with double/single quotes, some are integers, some decimals, ...)

How to Represent a Graph?

 VisuallyAdjacency matrix Adjacency list

	Target node					
		1	2	3	4	1:2,3
$\begin{aligned} & \text { Source } \\ & \text { node } \end{aligned}$	1	0	1	3	0	3: 2
	2	0	0	0	2	
	3	0	1	0	0	
	4	0	0	0	0	

Edge list
1, 2, 1
1, 3, 3
2, 4, 2
3, 2, 1

Assigning an ID to a node

- Use a "map" (Java) / "dictionary" (Python) / SQLite
- Same concept: given an entity/node (e.g., "Tom") not seen before, assign a number to it
- Example of using SQLite to map names to IDs

Hidden column; SQLite automatically created for you

rowid	name
1	Tom
2	Sandy
3	Richard
4	Polo

How to use the node IDs?

Create an index for "name". Then write a "join" query.

	!
rowid	name
1	Tom
2	Sandy
3	Richard
4	Polo

source	target
Tom	Sandy
Polo	Richard
	\downarrow
	\boldsymbol{y}
source	target
1	2
4	3

How to store "large" graphs?

How large is "large"?

What do you think?

- In what units? Thousands? Millions?

How do you measure a graph's size?

- By ...
(Hint: highly subjective. And domain specific.)

Storing large graphs...

On your laptop computer

- SQLite
- Neo4j (GPL license) http://neo4j.com/licensing/

On a server

- MySQL, PostgreSQL, etc.
- Neo4j (?)

Storing large graphs...

With a cluster

- Titan (on top of HBase), S2Graph - if you need real time read and write
- Hadoop (generic framework) - if batch processing is fine
- Hama, Giraph, inspired by Google's Pregel
- FlockDB, by Twitter
- Turri (Apple) / Dato / GraphLab

Storing large graphs on your computer

 I like to use SQLite. Why? Good enough for my use.- Easily handle up to gigabytes
- Roughly tens of millions of nodes/edges (perhaps up to billions?). Very good! For today's standard.
- Very easy to maintain: one cross-platform file
- Has programming wrappers in numerous languages
- C++, Java (Andriod), Python, Objective C (iOS),...
- Queries are so easy!
e.g., find all nodes' degrees = 1 SQL statement
- Bonus: SQLite even supports full-text search
- Offline application support (iPad)

SQLite graph database schema

Simplest schema:

```
edges(source_id, target_id)
```

More sophisticated (flexible; lets you store more things):

```
CREATE TABLE nodes (
```

 id INTEGER PRIMARY KEY,
 type INTEGER DEFAULT 0,
 name VARCHAR DEFAULT '');
 CREATE TABLE edges
source_id INTEGER,
target id INTEGER,
type INTEGER DEFAULT 0,
weight FLOAT DEFAULT 1,
timestamp INTEGER DEFAULT 0,
PRIMARY KEY(source_id, target_id, timestamp));

[Side note; you already did this in HW1] Full-Text Search (FTS) on SQLite http://www.sqlite.org/fts3.html

Very simple. Built-in. Only needs 3 lines of commands.

- Create FTS table (index)

CREATE VIRTUAL TABLE critics_consensus USING fts 4 (consensus) ;

- Insert text into FTS table

INSERT INTO critics_consensus SELECT critics_consensus FROM movies;

- Query using the "match" keyword SELECT * FROM critics_consensus WHERE consensus MATCH 'funny OR horror';

SQLite originally developed by Google engineers

I have a graph dataset. Now what?

Analyze it! Do "data mining" or "graph mining". How does it "look like"? Visualize it if it's small.

Does it follow any expected patterns?

Or does it *not* follow some expected patterns (outliers)?

- Why does this matter?
- If we know the patterns (models), we can do prediction, recommendation, etc. e.g., is Alice going to "friend" Bob on Facebook? People often buy beer and diapers together.
- Outliers often give us new insights e.g., telemarketer's "friends" don't know each other

Finding patterns \& outliers in graphs

Outlier/Anomaly detection

- To spot them, we need to find patterns first
- Anomalies = things that do not fit the patterns

To effectively do this, we need large datasets

- patterns and anomalies don't show up well in small datasets

Are real graphs random?

Before layout

Random graph (Erdos-Renyi) 100 nodes, avg degree = 2

http://en.wikipedia.org/wiki/Erdős-Rényi_model
No obvious patterns

After layout

Graph and layout generated with pajek
http://vlado.fmf.uni-lj.si/pub/networks/pajek/

Laws and patterns

Laws and patterns

- Are real graphs random?

Laws and patterns

- Are real graphs random?

Laws and patterns

- Are real graphs random?
- A: NO!!!
- Diameter (longest shortest path)
- in- and out- degree distributions
- other (surprising) patterns
- So, let's look at the data

Power Law in Degree Distribution

Faloutsos, Faloutsos, Faloutsos [SIGCOMM99]
Seminal paper. Must read!

Christos was
Polo's advisor
Zipf's law: the frequency of any item is inversely proportional to the item's rank (when ranked by decreasing frequency)

Power Law in Degree Distribution

Faloutsos, Faloutsos, Faloutsos [SIGCOMM99]
Seminal paper. Must read!

Christos was
Polo's advisor
Zipf's law: the frequency of any item is inversely proportional to the item's rank (when ranked by decreasing frequency)

Power Law in Eigenvalues of Adjacency Matrix

How about graphs from other domains?

More Power Laws

- Web hit counts
[Alan L. Montgomery and Christos Faloutsos]
Web Site Traffic

epinions.com

- who-trusts-whom [Richardson + Domingos, KDD 2001]

And numerous more

- \# of sexual contacts
- Income [Pareto] - 80-20 distribution
- Duration of downloads [Bestavros+]
- Duration of UNIX jobs
- File sizes
-...

Any other 'laws’?

- Yes!
- Small diameter (~ constant!) -
- six degrees of separation / 'Kevin Bacon’
- small worlds [Watts and Strogatz]

Problem: Time evolution

- Jure Leskovec (CMU -> Stanford)
- Jon Kleinberg (Cornell)
- Christos Faloutsos (CMU)

Evolution of the Diameter

- Prior work on Power Law graphs hints at slowly growing diameter:
- diameter ~ O(log N)
- diameter $\sim \mathrm{O}(\log \log \mathrm{N})$

-What is happening in real data?

Evolution of the Diameter

- Prior work on Power Law graphs hints at slowly growing diameter:
- diameter~ $\sim(\log N)$
- diameter $\mathrm{Q}(\log \log \mathrm{N})$
-What is happening in real data?
- Diameter shrinks over time

Diameter - Patents Network

- Patent citation network
- 25 years of data
- @1999
- 2.9 M nodes
-16.5 M edges

Effective diameter

Why Effective Diameter?

The maximum diameter is susceptible to outliers

So, we use effective diameter instead

- defined as the minimum number of hops in which $\mathbf{9 0 \%}$ of connected node pairs can reach each other

Evolution of \#Node and \#Edge

$\mathrm{N}(\mathrm{t})$... nodes at time t
$E(t)$... edges at time t

Suppose that

$$
N(t+1)=2 * N(t)
$$

Q: what is your guess for

$$
E(t+1)=? 2 * E(t)
$$

Evolution of \#Node and \#Edge

$\mathrm{N}(\mathrm{t})$... nodes at time t
$E(t)$... edges at time t
Suppose that

$$
N(t+1)=2 * N(t)
$$

Q: what is your guess for

$$
E(t+1)=? 2 \text { * } E(t)
$$

A: over-doubled!
But obeying the "Densification Power Law"

Densification - Patent Citations

- Citations among patents granted
- @1999
- 2.9 M nodes
- 16.5 M edges
- Each year is a datapoint

$\mathrm{N}(\mathrm{t})$

So many laws!

There will be more to come...

To date, there are 11 (or more) laws

- RTG: A Recursive Realistic Graph Generator using Random Typing [Akoglu, Faloutsos]

L01 Power-law degree distribution: the degree distibution should follow a powerlaw in the form of $f(d) \propto d^{\gamma}$, with the exponent $\gamma<0[5,11,16,24]$
L02 Densification Power Law (DPL): the number of nodes N and the number of edges E should follow a power-law in the form of $E(t) \propto N(t)^{\alpha}$, with $\alpha>1$, over time [20].
L03 Weigth Power Law (WPL): the total weight of the edges W and the number of edges E should follow a power-law in the form of $W(t) \propto E(t)^{\beta}$, with $\beta>1$, over time [22].
L04 Snapshot Power Law (SPL): the total weight of the edges W_{n} attached to each node and the number of such edges, that is, the degree d_{n} should follow a power-law in the form of $W_{n} \propto d_{n}^{\theta}$, with $\theta>1$ [22].
L05 Triangle Power Law (TPL): the number of triangles Δ and the number of nodes that participate in Δ number of triangles should follow a power-law in the form of $f(\Delta) \propto \Delta^{\sigma}$, with $\sigma<0$ [29].
L06 Eigenvalue Power Law ($E P L$): the eigenvalues of the adjacency matrix of the graph should be power-law distributed [28].
L07 Principal Eigenvalue Power Law $\left(\lambda_{1} P L\right)$: the largest eigenvalue λ_{1} of the

So many laws!

What should you do?

- Try as many distributions as possible and see if your graph fits them.
- If it doesn't, find out the reasons. Sometimes it's due to errors/problems in the data; sometimes, it signifies some new patterns!

Polonium: Tera-Scale Graph Mining and Inference for Malware Detection [Chau, et al]

