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Centrality 
= “Importance”



Why Node Centrality?
What can we do if we can rank all the nodes in a 
graph (e.g., Facebook, LinkedIn, Twitter)?
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Why Node Centrality?
What can we do if we can rank all the nodes in a 
graph (e.g., Facebook, LinkedIn, Twitter)?

• Find celebrities or influential people in a 
social network (Twitter)

• Find “gatekeepers” who connect communities 
(headhunters love to find them on LinkedIn)

• What else?
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Why Node Centrality?
Helps graph analysis, visualization, understanding, e.g.,

• Let us rank nodes, group or study them by centrality
• Only show subgraph formed by the top 100 nodes, 

out of the millions in the full graph
• Similar to google search results (ranked, and 

they only show you 10 per page)
• Most graph analysis packages already have centrality 

algorithms implemented. Use them!
Can also compute edge centrality.  
Here we focus on node centrality.
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Degree Centrality (easiest)
Degree = number of neighbors

• For directed graphs

• In degree = No. of incoming edges

• Out degree = No. of outgoing edges

• For undirected graphs, only degree is defined.  

• Algorithms?

• Sequential scan through edge list

• What about for a graph stored in SQLite?
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Computing Degrees using SQL
Recall simplest way to store a graph in SQLite:
edges(source_id, target_id)

1. If slow, first create index for each column
2. Use group by statement to find out degrees
select count(*) from edges group by source_id;
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High betweenness = “gatekeeper”

Betweenness of a node v
= 
 
 
= how often a node serves as the “bridge” that 
connects two other nodes.

Betweenness Centrality
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Number of shortest paths between s 
and t that goes through v

Number of shortest paths 
between s and t

Betweenness is very well studied. http://en.wikipedia.org/wiki/Centrality#Betweenness_centrality

http://en.wikipedia.org/wiki/Centrality#Betweenness_centrality


(Local) Clustering Coefficient
A node’s clustering coefficient is a 
measure of how close the node’s 
neighbors are from forming a clique.

1 = neighbors form a clique
0 = No edges among neighbors

(Assuming undirected graph)
“Local” means it’s for a node; can also 
compute a graph’s “global” coefficient

�9Image source: http://en.wikipedia.org/wiki/Clustering_coefficient
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Requires triangle counting
Real social networks have a lot of triangles

• Friends of friends are friends 
Triangles are expensive to compute

(neighborhood intersections; several approx. algos)

Can we do that quickly?

Computing Clustering Coefficients...
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Algorithm details:  
Faster Clustering Coefficient Using Vertex Covers
http://www.cc.gatech.edu/~ogreen3/_docs/2013VertexCoverClusteringCoefficients.pdf

http://www.cc.gatech.edu/~ogreen3/_docs/2013VertexCoverClusteringCoefficients.pdf


But: triangles are expensive to compute
(3-way join; several approx. algos)
Q: Can we do that quickly?

A: Yes!
#triangles = 1/6 Sum ( λi3 )

      
(and, because of skewness, 

we only need the top few eigenvalues!

Super Fast Triangle Counting 
[Tsourakakis ICDM 2008]

details
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Power Law in Eigenvalues of 
Adjacency Matrix

Eigen exponent = slope = -0.48
Eigenvalue

Rank of decreasing eigenvalue
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1000x+ speed-up, >90% accuracy
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More Centrality Measures…
• Degree

• Betweenness

• Closeness, by computing

• Shortest paths

• “Proximity” (usually via random walks) — used 
successfully in a lot of applications

• Eigenvector

• …
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PageRank (Google)

Brin, Sergey and Lawrence Page (1998). 
Anatomy of a Large-Scale Hypertextual Web 
Search Engine. 7th Intl World Wide Web Conf.

Larry Page Sergey Brin
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A node is important,
if it is connected 
with important nodes
(recursive, but OK!)
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PageRank: Problem
Given a directed graph, find its most interesting/central node



PageRank: Solution
Given a directed graph, find its most interesting/central node
Proposed solution: use random walk; most “popular” nodes 
are the ones with highest steady state probability (ssp)

“state” = webpage

A node is important,
if it is connected 
with important nodes
(recursive, but OK!)

2 3

5
4

1
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(Simplified) PageRank
Let B be the transition matrix: transposed, column-normalized

p1
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p4

p5

1

1 1

1/2 1/2

1/2

1/2
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p2

p3

p4

p5

=

To  
From  B p p=

How to compute SSP: 
https://fenix.tecnico.ulisboa.pt/downloadFile/3779579688473/6.3.pdf 
http://www.sosmath.com/matrix/markov/markov.html !18

https://fenix.tecnico.ulisboa.pt/downloadFile/3779579688473/6.3.pdf
http://www.sosmath.com/matrix/markov/markov.html


B p = 1 * p
Thus, p is the eigenvector that corresponds to the highest 
eigenvalue (=1, since the matrix is column-normalized)

Why does such a p exist? 
p exists if B is nxn, nonnegative, irreducible  
[Perron–Frobenius theorem]

(Simplified) PageRank
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• In short: imagine a person randomly moving along the edges/links
•A node’s PageRank score is the steady-state probability (ssp) of 
finding the person at that node

Full version of algorithm:  
With occasional random jumps to any nodes

Why? To make the matrix irreducible.
Irreducible = from any state (node), there’s non-zero probability to 
reach any other state (node)

(Simplified) PageRank



Full Algorithm
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With probability 1-c, fly-out to a random node
Then, we have

p = c B p + (1-c) 1
n 1/n

1/n

1/n

1/n

1/n



B               p       

How to compute PageRank for 
huge matrix?
Use the power iteration method

http://en.wikipedia.org/wiki/Power_iteration

Can initialize this vector to any non-zero vector, e.g., all “1”s

p’

+

p = c B p + (1-c) 1

= c (1-c)

2 3

5
4

1

n

n
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http://en.wikipedia.org/wiki/Power_iteration


�23http://www.cs.duke.edu/csed/principles/pagerank/

Also great for checking the correctness of your PageRank Implementation.



PageRank for graphs (generally)
You can run PageRank on any graphs

• All you need are the graph edges!
Should be in your algorithm “toolbox”

• Better than degree centrality 

• Fast to compute for large graphs, runtime linear 
in the number of edges, O(E)

But can be “misled” (Google Bomb)

• How?
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Intuition: not all pages are equal, some more 
relevant to some people
Goal: rank pages in a way that those more 
relevant to you will be ranked higher

How? Make just one small change to PageRank
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Personalized PageRank



With probability 1-c, fly-out to  
a random node some preferred nodes

Personalized PageRank

Can initialize this vector to any non-zero vector, e.g., all “1”s

+= 0.8 0.2
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Why Learn Personalized PageRank?

For recommendation
• If I like webpage A, what else do I like?
• If I bought product A, what other products 

would I also buy?
Visualizing and interacting with large graphs

• Instead of visualizing every single nodes, 
visualize the most important ones

Very flexible — works on any graph
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Related “guilt-by-association” / 
diffusion techniques

• Personalized PageRank  
(= Random Walk with Restart)

• “Spreading activation” or “degree of interest” 
in Human-Computer Interaction (HCI)

• Belief Propagation  
(powerful inference algorithm, for fraud 
detection, image segmentation, error-
correcting codes, etc.)

�28



• Intuitive to interpret  
uses “network effect”, homophily

• Easy to implement 
math is relatively simple (mainly matrix-
vector multiplication)

• Fast  
run time linear to #edges, or better

• Probabilistic meaning
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Why are these algorithms popular?



Human-In-The-Loop Graph Mining

Apolo:  
Machine Learning + Visualization 
CHI 2011
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Apolo: Making Sense of Large Network Data by Combining Rich User Interaction and Machine Learning



Finding More Relevant Nodes

HCI
Paper

Data Mining 
Paper

Citation network
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Finding More Relevant Nodes

HCI
Paper

Data Mining 
Paper

Citation network

�31



Finding More Relevant Nodes

Apolo uses guilt-by-association 
(Belief Propagation, similar to personalized PageRank)

HCI
Paper

Data Mining 
Paper

Citation network
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Demo: Mapping the Sensemaking Literature
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Nodes: 80k papers from Google Scholar (node size: #citation)     
Edges: 150k citations







Key Ideas (Recap)
Specify exemplars
Find other relevant nodes (BP) 
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Apolo’s Contributions

Apolo User

It was like having a  
partnership with the machine.

Human + Machine

Personalized Landscape  

1

2
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Apolo 2009
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Apolo 2010
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Apolo 2011 22,000 lines of code. Java 1.6. Swing. 
Uses SQLite3 to store graph on disk
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User Study
Used citation network
Task: Find related papers for 2 sections in 
a survey paper on user interface
•  Model-based generation of UI
•  Rapid prototyping tools 
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Between subjects design
Participants: grad student or research staff
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Higher is better.
Apolo wins.

* Statistically significant, by two-tailed t test, p <0.05

Judges’ Scores

0

8

16

Model-
based

*Prototyping *Average

Apolo Scholar

Score
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What kinds of prototypes? 
• Paper prototype, lo-fi prototype, high-fi prototype

Important to involve REAL users as early as possible
• Recruit your friends to try your tools
• Lab study (controlled, as in Apolo) 
• Longitudinal study (usage over months)
• Deploy it and see the world’s reaction!

• To learn more:
• CS 6750 Human-Computer Interaction
• CS 6455 User Interface Design and Evaluation
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Practitioners’ guide to building 
(interactive) applications



Practitioners’ guide to building 
(interactive) applications

Think about scalability early
• Identify candidate scalable algorithms 

early on
Use iterative design approach, as in Apolo 
and industry

• Why? It’s hard to get it right the first time
• Create prototype, evaluate, modify 

prototype, evaluate, ...
• Quick evaluation helps you identify 

important fixes early — save you a lot 
of time overall
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Waterfall model  
(software engineering)



If you want to know more about people…
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http://amzn.com/0321767535


