http://poloclub.gatech.edu/cse6242 CSE6242: Data & Visual Analytics

Clustering

Duen Horng (Polo) Chau

Associate Professor, College of Computing Associate Director, MS Analytics Georgia Tech

Mahdi Roozbahani

Lecturer, Computational Science & Engineering, Georgia Tech Founder of Filio, a visual asset management platform

Partly based on materials by Professors Guy Lebanon, Jeffrey Heer, John Stasko, Christos Faloutsos

Clustering

The most common type of **unsupervised** learning

High-level idea: group similar things together

"Unsupervised" because clustering model is learned without any labeled examples

Applications of Clustering

- Find similar patients subgroups
 - e.g., in healthcare
- Finding groups of similar text documents (topic modeling)

Clustering techniques you've got to know

K-means Hierarchical Clustering DBSCAN

K-means (the "simplest" technique)

Best D3 demo Polo could find: http://tech.nitoyon.com/en/blog/2013/11/07/k-means/

Algorithm Summary

- We tell K-means the value of **k** (#clusters we want)
- **Randomly** initialize the k cluster "means" ("centroids")
- Assign each item to the the cluster whose mean the item is <u>closest</u> to (so, we need a similarity function)
- Update/recompute the new "means" of all k clusters.
- If all items' assignments do not change, **stop**.

K-means What's the catch?

http://nlp.stanford.edu/IR-book/html/htmledition/evaluation-of-clustering-1.html

How to **decide k** (a hard problem)?

• A few ways; best way is to evaluate with real data (https://www.ee.columbia.edu/~dpwe/papers/PhamDN05-kmeans.pdf)

Only locally optimal (vs global)

- Different initialization gives different clusters
 - How to "fix" this?
- "Bad" starting points can cause algorithm to converge slowly
- Can work for relatively large dataset
 - Time complexity O(d n log n) per iteration (assumptions: n >> k, dimension d is small) <u>http://www.cs.cmu.edu/~./dpelleg/download/kmeans.ps</u>

Hierarchical clustering

High-level idea: build a tree (hierarchy) of clusters

Ways to calculate **distances** between two clusters

Single linkage

- minimum of distance between clusters
- similarity of two clusters = similarity of the clusters' most similar members

Complete linkage

- maximum of distance between clusters
- similarity of two clusters = similarity of the clusters' most dissimilar members

Average linkage

distance between cluster centers

https://bl.ocks.org/mbostock/4063570 https://bl.ocks.org/mbostock/4339607

Hierarchical clustering for large datasets?

- OK for small datasets (e.g., <10K items)
 - Time complexity between O(n^2) to O(n^3) where n is the number of data items
 - Not good for millions of items or more
- But great for understanding concept of clustering

DBSCAN

"Density-based spatial clustering with noise" https://en.wikipedia.org/wiki/DBSCAN

Received "test-of-time award" at KDD'14 — an extremely prestigious award.

Only need two parameters:

- 1. "radius" epsilon
- 2. minimum number of points (e.g., 4) required to form a dense region

Yellow "border points" are density-reachable from red "core points", but not vice-versa.

Interactive DBSCAN Demo

https://www.naftaliharris.com/blog/visualizing-dbscan-clustering/

Only need two parameters:

1. "radius" epsilon

2. minimum number of points (e.g., 4) required to form a dense region

Yellow "border points" are **density-reachable** from red "core points", but not vice-versa.

You can use DBSCAN now.

http://scikit-learn.org/stable/modules/generated/sklearn.cluster.DBSCAN.html

http://scikit-learn.org/dev/auto_examples/cluster/plot_cluster_comparison.html#sphxglr-auto-examples-cluster-plot-cluster-comparison-py

Visualizing Clusters

D3 has some built-in techniques

https://github.com/mbostock/d3/wiki/Hierarchy-Layout

Arithmetic	Expre	Query								
						Geomet	ry			
StringUtil										
DateUtil										
	90	Vor	ad (eq di	lv It	Palette ShapeP	ColorPak	Strings		
	coi wł	n strin								
Comparison	SII III	not	nea	mul	te at					
	ms on	d In	eub	eub						
	mil or	isa	a SUO ##	100	SizePak					
	avi ar	" moc	gt	in ran						

Visualizing Topics as Matrix

Termite: Visualization Techniques for Assessing Textual Topic Models Jason Chuang, Christopher D. Manning, Jeffrey Heer. AVI 2012. <u>http://vis.stanford.edu/papers/termite</u>

Visualizing Topics as Matrix

Termite: Visualization Techniques for Assessing Textual Topic Models

Jason Chuang, Christopher D. Manning, Jeffrey Heer. AVI 2012.

http://vis.stanford.edu/papers/termite

Termite: Topic Model Visualization.

Visualizing Graph Communities

(using colors)

Visualizing Graph Communities

(using colors and convex hulls)

http://www.cc.gatech.edu/~dchau/papers/11-chi-apolo.pdf

Visualizing Graph Communities as Matrix

https://bost.ocks.org/mike/miserables/

Require good node ordering!

Les Misérables Co-occurrence

Visualizing Graph Communities as Matrix

Require good node ordering!

Fully-automated way: "Cross-associations"

http://www.cs.cmu.edu/~christos/PUBLICATIONS/kdd04-cross-assoc.pdf

