http://poloclub.gatech.edu/cse6242 CSE6242: Data & Visual Analytics

Graphs / Networks

Centrality measures, algorithms, Interactive applications

Duen Horng (Polo) Chau

Associate Professor, College of Computing Associate Director, MS Analytics Georgia Tech

Mahdi Roozbahani

Lecturer, Computational Science & Engineering, Georgia Tech Founder of Filio, a visual asset management platform

Partly based on materials by Professors Guy Lebanon, Jeffrey Heer, John Stasko, Christos Faloutsos

Centrality = "Importance"

Why Node Centrality?

What can we do if we can rank all the nodes in a graph (e.g., Facebook, LinkedIn, Twitter)?

Why Node Centrality?

What can we do if we can rank all the nodes in a graph (e.g., Facebook, LinkedIn, Twitter)?

- Find celebrities or influential people in a social network (Twitter)
- Find "gatekeepers" who connect communities (headhunters love to find them on LinkedIn)
- What else?

Why Node Centrality?

Helps graph analysis, visualization, understanding, e.g.,

- Let us rank nodes, group or study them by centrality
- Only show subgraph formed by the top 100 nodes, out of the millions in the full graph
 - Similar to google search results (ranked, and they only show you 10 per page)
- Most graph analysis packages already have centrality algorithms implemented. Use them!

Can also compute edge centrality. Here we focus on node centrality.

Degree Centrality (easiest)

Degree = number of neighbors

- For directed graphs
 - In degree = No. of incoming edges
 - Out degree = No. of outgoing edges
- For undirected graphs, only degree is defined.
- Algorithms?
 - Sequential scan through edge list
 - What about for a graph stored in SQLite?

2

Δ

1, 2

1, 3

2, 4

3, 2

Computing Degrees using SQL

Recall simplest way to store a graph in SQLite:

edges(source_id, target_id)

1. If slow, first create index for each column

2. Use group by statement to find out degrees

select count(*) from edges group by source_id;

1, 2

1, 3

2, 4

3, 2

Betweenness Centrality

High betweenness = "gatekeeper"

Betweenness of a node v $= \sum_{s \neq v \neq t \in V} \frac{\sigma_{st}(v)}{\sigma_{st}} \xrightarrow{\text{Number of shortest paths between s and t that}}_{\text{Number of shortest paths between s and t}}$

= how often a node serves as the "bridge" that connects two other nodes.

(Local) Clustering Coefficient

A node's clustering coefficient is a measure of how close the node's neighbors are from forming a clique.

- 1 = neighbors form a clique
- 0 = No edges among neighbors

(Assuming undirected graph)

"Local" means it's for a node; can also compute a graph's "global" coefficient

10

(Local) Clustering Coefficient

V: a node

K_V: Number of edges

 N_V : Number of links between neighbors of V

$$CC(V) = \frac{N_V}{\frac{K_V(K_V - 1)}{2}}$$

Computing Clustering Coefficients...

Requires triangle counting

Real social networks have a lot of triangles

• Friends of friends are friends

Triangles are **expensive** to compute

(neighborhood intersections; several approx. algos)

Can we do that quickly?

Algorithm details: Faster Clustering Coefficient Using Vertex Covers <u>http://www.cc.gatech.edu/~ogreen3/_docs/2013VertexCoverClusteringCoefficients.pdf</u>

Super Fast Triangle Counting [Tsourakakis ICDM 2008]

But: triangles are expensive to compute (3-way join; several approx. algos) Q: Can we do that quickly? A: Yes! #triangles = 1/6 Sum (λ_i³)

(and, because of skewness, we only need the top few eigenvalues!

Power Law in Eigenvalues of Adjacency Matrix

More Centrality Measures...

- Degree
- Betweenness
- Closeness, by computing
 - Shortest paths
 - "Proximity" (usually via random walks) used successfully in a lot of applications
- Eigenvector

PageRank (Google)

Larry Page

Sergey Brin

Brin, Sergey and Lawrence Page (1998). Anatomy of a Large-Scale Hypertextual Web Search Engine. 7th Intl World Wide Web Conf.

PageRank: Problem

Given a directed graph, find its most interesting/central node

A node is important, if it is connected with important nodes (recursive, but OK!)

PageRank: Solution

Given a directed graph, find its most interesting/central node Proposed solution: use **random walk**; most "popular" nodes are the ones with highest steady state probability (ssp)

A node is important, if it is connected with important nodes (recursive, but OK!)

"state" = webpage

(Simplified) PageRank

Let **B** be the transition matrix: transposed, column-normalized

How to compute SSP: https://fenix.tecnico.ulisboa.pt/downloadFile/3779579688473/6.3.pdf http://www.sosmath.com/matrix/markov/markov.html

(Simplified) PageRank $A \times = S \times A$

B p = 1 * **p**

Thus, **p** is the **eigenvector** that corresponds to the highest eigenvalue (=1, since the matrix is column-normalized)

Why does such a **p** exist?

p exists if **B** is nxn, nonnegative, irreducible [Perron–Frobenius theorem]

(Simplified) PageRank

- In short: imagine a person randomly moving along the edges/links
- A node's PageRank score is the steady-state probability (ssp) of finding the person at that node

Full version of algorithm:

With occasional random jumps to any nodes

Why? To make the matrix irreducible.

Irreducible = from any state (node), there's non-zero probability to reach any other state (node)

Full Algorithm

With probability 1-c, fly-out to a random node Then, we have

How to compute PageRank for huge matrix?

4

5

Use the power iteration method http://en.wikipedia.org/wiki/Power_iteration

Can initialize this vector to any non-zero vector, e.g., all "1"s

PageRank Explained with Javascript

Also great for checking the correctness of your PageRank Implementation.

http://www.cs.duke.edu/csed/principles/pagerank/

PageRank for graphs (generally)

You can run PageRank on any graphs

• All you need are the graph edges!

Should be in your algorithm "toolbox"

- Better than degree centrality
- Fast to compute for large graphs, runtime linear in the number of edges, O(E)

But can be "misled" (Google Bomb)

• How?

Personalized PageRank

Intuition: not all pages are equal, some more relevant to some people

Goal: rank pages in a way that those more relevant to you will be ranked higher

How? Make just one small change to PageRank

Personalized PageRank

0

1

0

With probability 1-c, fly-out to a random node some preferred nodes

Why Learn Personalized PageRank?

For recommendation

- If I like webpage A, what else do I like?
- If I bought product A, what other products would I also buy?

Visualizing and interacting with large graphs

 Instead of visualizing every single nodes, visualize the most important ones

Very flexible — works on any graph

Related "guilt-by-association" / diffusion techniques

- Personalized PageRank
 (= Random Walk with Restart)
- "Spreading activation" or "degree of interest" in Human-Computer Interaction (HCI)
- Belief Propagation (powerful inference algorithm, for fraud detection, image segmentation, errorcorrecting codes, etc.)

Why are these algorithms popular?

- Intuitive to interpret uses "network effect", homophily
- Easy to implement math is relatively simple (mainly matrixvector multiplication)
- Fast

run time linear to #edges, or better

Probabilistic meaning

Human-In-The-Loop Graph Mining **Apolo:** Machine Learning + Visualization *CHI 2011*

Apolo: Making Sense of Large Network Data by Combining Rich User Interaction and Machine Learning

Finding More Relevant Nodes

Citation network

Apolo uses guilt-by-association (Belief Propagation, similar to personalized PageRank)

Demo: Mapping the Sensemaking Literature

Nodes: 80k papers from Google Scholar (node size: #citation) **Edges**: 150k citations

The cost structure of sensemaking

Russell, D.M. and Stefik, M.J. and Pirolli, P. and Card, S.K.

245 citations 8 versions

PDF 1993

51

00									
🖤 🕀 (Θ.	• • •	\$				Search	Suggestio	ns
							For The cost structure of	sensemakin	g –
							The information visual Card, S.K. and Robertson, (izer, an inf G.G. and Macki	1991 532
							The WebBook and the Card, S.K. and Robertson, G	Web Forag G.G. and York, W	1996 . 403
						-	LyberWorld—a visualiz Hemmje, M. and Kunkel, C.	ation user and Willett, A.	1994 223
							The structure of the in Card, S.K. and Mackinlay, J.	formation	1997 198
						Information visualization 2009 Card, S. and Mackinlay, JD and Shneiderm 180			
The cost struct							"I"II get that off the au Moran, T.P. and Palen, L. ar	dio": a cas nd Harrison, S	1997 143
			•			-	An organic user interfa Mackinlay, J.D. and Rao, R.	ce for sear and Card, S.K.	1995 123
							Using a landscape met Chalmers, M.	aphor to re	1993 122
							Personal information n Jones, W.P. and Teevan, J.	nanagement	2007 109
							SearchTogether: an inte Morris, M.R. and Horvitz, E	erface for c	2007 108
							Information foraging t Pirolli, P.	heory: Ada	2007 107
				_			Investigating behavior White, R.W. and Drucker, S.	al variabilit ^{M.}	2007 79
The cost struc	cture of	sensemak	ing		PDF	1993	Jigsaw: Supporting inv Stasko, J. and Görg, C. and	estigative Liu, Z.	2008 71
Russell, D.M. and Stefik, M.J. and Pirolli, P. and Card, S.K. 245 citations 8 versions							The cost-of-knowledg Card, S.K. and Pirolli, P. and	e character I Mackinlay, J.D.	1994 54
							Collaborative conceptu Potts, C. and Catledge, L.	al design:	1996 45
▶ 📮 🗆								googlesch	olar.db

Key Ideas (Recap)

Specify exemplars Find other relevant nodes (BP)

Apolo's Contributions 1 Human + Machine

It was like having a **partnership** with the machine.

2 Personalized Landscape

Apolo 2009

Cluster Data Add Group

Recommendations:

End User Programming

End users creating effective softw... End user software engineering: chi... Invited research overview: end-us...

Brad A. Myers

Margaret M. Burnett Mary Beth Rosson Andrew Jensen Ko Alan F. Blackwell The Show: All

Text Entry

In-stroke word completion. Integrating isometric joysticks into... Eyes on the road, hands on the whe... An alternative to push, press, and t... Maximizing the guessability of symb... Few-key text entry revisited: mnem... Text entry from power wheelchairs: ... Joystick text entry with date stamp, ... Hubble units a bueble to constitute to constitute to the stamp, ...

Not Interested

Automatically generating user inte... Decision-Theoretic User Interface ...

-

Daniel S. Weld

Krzysztof Z. Gajos Automatically generating Exploring the design space Predictability and accuracy Control of

Brad

Brad A. Myers

The garnet user interface developm... Using HCI Techniques to Design a M... Creating charts by demonstration. The Amulet User Interface Developm... Easily Adding Animations to Interfac... Simplifying video editng using metad... SILVER: simplifying video editing wit...

Interface Generation

Huddle: automatically generating i... UNIFORM: automatically generatin... Demonstrating the viability of auto... Jeffrey Nichols Brandon Rothrock Duen Horng Chau Ŧ

Apolo 2010

S Shiftr	
Data Save/Load Export	
Search 😖 sense 103 matches 🗼 👋 🖈 Pin 👻 🍕 Select neighbors 🛛 🍹 Pause layout 🖉 Results: 18 🗘 🔨 Change in	n representations
all O title O authors	
Title Cites Authors Year Image: Cites Authors Year The cost structure of sensemaking 188 Russell, [1993 Image: Cites 188 Russell, [1993 Image: Cites 1996 Image: Cites Image: Cites 1997 Image: Cites Image: Cites <td< th=""><th>The digita</th></td<>	The digita
PIM Collab search InfoVis Sensemaking × + OEvaluating Collaborative Information Speking Intervention	
Title Cit Authors Year Prestore SanseMaker: an information-exploi 155 Baldonad 1997 Image: SanseMaker: an information visualization Inferring web communities from lii 63 Gibson, D 1998 Image: SanseMaking supporting inform 11 Qu, Y. 2003 A sertsemaking supporting inform 11 Qu, Y. 2008 Image: supporting inform 11 Qu, Y. 2008 The digital library integrated task e 05 Cousins, 1997 Image: supporting inform 12 Qu, Y. 2008 An information-sterking e 03 Hendry, I 1997 17 nodes selected Image: selected Im	Cat-a-Cone:
The effectiveness of automatically The microstructures of social taggi Sensemaking: Bringing theories an Data manipulation services in the F Considerations for information em. 78 Fumas, G 1998 Considerations for information em. 78 Fumas, G 1998 Constitue Proceedings of the INTERACT'93 and CH1'93 cor 0 1 2 3 4 5 6	

Apolo 2011 22,000 lines of code. Java 1.6. Swing. Uses SQLite3 to store graph on disk

Russell, D.M. and Stefik, M.J. and Pirolli, P. and Card, S.K.

245 citations 8 versions

googlescholar.db

User Study

Used citation network

Task: Find related papers for 2 sections in a survey paper on user interface

- Model-based generation of UI
- Rapid prototyping tools

Past, Present and Future of User Interface Software Tools

Brad Myers, Scott E. Hudson, and Randy Pausch

Human Computer Interaction Institute School of Computer Science Carnegie Mellon University

Between subjects design Participants: grad student or research staff

* Statistically significant, by two-tailed t test, p < 0.05

Practitioners' guide to building (interactive) applications

What kinds of **prototypes**?

Paper prototype, lo-fi prototype, high-fi prototype

Important to involve **REAL users** as early as possible

- Recruit your friends to try your tools
- Lab study (controlled, as in Apolo)
- Longitudinal study (usage over months)
- Deploy it and see the world's reaction!
- To learn more:
 - CS 6750 Human-Computer Interaction
 - CS 6455 User Interface Design and Evaluation

Practitioners' guide to building (interactive) applications

Think about scalability early

- Identify candidate scalable algorithms early on
- Use **iterative** design approach, as in Apolo and industry
 - Why? It's hard to get it right the first time
 - Create prototype, evaluate, modify prototype, evaluate, ...
 - Quick evaluation helps you identify important fixes early — save you a lot of time overall

Waterfall model (software engineering)

If you want to know more about people... http://amzn.com/0321767535

SUSAN M. WEINSCHENK, Ph.D.

