Scaling Up
Hadoop

Duen Horng (Polo) Chau
Associate Professor
Associate Director, MS Analytics
Machine Learning Area Leader, College of Computing
Georgia Tech

Partly based on materials by
Professors Guy Lebanon, Jeffrey Heer, John Stasko, Christos Faloutsos, Parishit Ram (GT PhD alum; SkyTree), Alex Gray
How to handle data that is **really** large?

Really big, as in...

- Petabytes (PB, about 1000 times of terabytes)
- Or beyond: exabyte, zettabyte, etc.

Do we *really* need to deal with such scale?

- Yes!
“Big Data” is Common...

Google processed 24 PB / day (2009)

Facebook’s add 0.5 PB / day to its data warehouses

CERN generated 200 PB of data from “Higgs boson” experiments

Avatar’s 3D effects took 1 PB to store

So, think BIG!

http://www.theregister.co.uk/2012/11/09/facebook_open_sources_corona/
http://thenextweb.com/2010/01/01/avatar-takes-1-petabyte-storage-space-equivalent-32-year-long-mp3/
http://dl.acm.org/citation.cfm?doid=1327452.1327492
How to analyze such large datasets?

First thing, how to **store** them?

Single machine? 60TB SSD ($$$) now available

Cluster of machines?

- How many machines?
- Need data backup, redundancy, recovery, etc.
- Need to worry about machine and drive failure.

How to analyze such large datasets?

First thing, how to store them?

Single machine? 60TB SSD ($$$) now available

Cluster of machines?

- How many machines?
- Need data backup, redundancy, recovery, etc.
- Need to worry about machine and drive failure.

Really? Really??

How to analyze such large datasets?

3% of 100,000 hard drives fail within first 3 months

Failure Trends in a Large Disk Drive Population
How to analyze such large datasets?

How to analyze them?

• What **software** libraries to use?
• What programming **languages** to learn?
• Or more generally, what **framework** to use?
Lecture based on
Hadoop: The Definitive Guide

Book covers Hadoop, some Pig, some HBase, and other things.

FREE on Safari Books Online for Georgia Tech students!!
Open-source software for reliable, scalable, distributed computing

Written in Java

Scale to thousands of machines

• **Linear** scalability (with good algorithm design): if you have 2 machines, your job runs twice as fast (ideally)

Uses simple programming model (MapReduce)

Fault tolerant (HDFS)

• Can recover from machine/disk failure (no need to restart computation)

http://hadoop.apache.org
Why learn Hadoop?

Fortune 500 companies use it

Many research groups/projects use it

Strong community support, and favored/backed by major companies, e.g., IBM, Google, Yahoo, eBay, Microsoft, etc.

It’s free, open-source

Low cost to set up (works on commodity machines)

An “essential skill”, like SQL

http://strataconf.com/strata2012/public/schedule/detail/22497
Elephant in the room

Hadoop created by Doug Cutting and Michael Cafarella while at Yahoo

Hadoop named after Doug’s son’s toy elephant
How does Hadoop scale up computation?

Uses master-worker architecture, and a simple computation model called MapReduce (popularized by Google’s paper)

Simple way to think about it

1. Divide data and computation into smaller pieces; each machine works on one piece
2. Combine results to produce final results

MapReduce: Simplified Data Processing on Large Clusters
http://static.usenix.org/event/osdi04/tech/full_papers/dean/dean.pdf
How does Hadoop scale up computation?

More technically...

1. **Map phase**
 Master node *divides* data and computation into smaller pieces; each worker node (“mapper”) works on one piece *independently* in parallel

2. **Shuffle phase** (automatically done for you)
 Master *sorts and moves* results to “reducers”

3. **Reduce phase**
 Worker nodes (“reducers”) *combines* results *independently* in parallel
Example:
Find words’ frequencies among text documents

Input

• “Apple Orange Mango Orange Grapes Plum”
• “Apple Plum Mango Apple Apple Plum”

Output

• Apple, 4
 Grapes, 1
 Mango, 2
 Orange, 2
 Plum, 3

Each worker (mapper) outputs a **key-value pair**

Master divides the data (each worker gets one line)

Pairs sorted by key (automatically done)

Each worker (reducer) combines pairs into one

A machine can be **both** a mapper and a reducer
map(String key, String value):
 // key: document id
 // value: document contents
 for each word w in value:
 emit(w, "1");
How to implement this?

```java
reduce(String key, Iterator values):
    // key: a word
    // values: a list of counts
    int result = 0;
    for each v in values:
        result += ParseInt(v);
    Emit(AsString(result));
```
What if a machine dies?

Replace it!

“map” and “reduce” jobs redistributed (for you) to other machines

Hadoop’s HDFS (Hadoop File System) enables this
HDFS: Hadoop File System

A distributed file system

Built on top of OS’s existing file system to provide redundancy and distribution

HDFS hides complexity of distributed storage and redundancy from the programmer

In short, you don’t need to worry much about this!
“History” of HDFS and Hadoop

Hadoop & HDFS based on…

• 2003 *Google File System* (GFS) paper

• 2004 Google *MapReduce* paper
What can you use Hadoop for?

As a “swiss knife”.

Works for many types of analyses/tasks (but not all of them).

What if you want to write less code?

• There are tools to make it easier to write MapReduce program (Pig), or to query results (Hive)
How to try Hadoop?

Hadoop can run on a **single machine** (e.g., your laptop)

- Takes < 30min from setup to running

Or a **“home-grown” cluster**

- Research groups often connect retired computers as a small cluster

Amazon EC2 (Amazon Elastic Compute Cloud), **Microsoft Azure**

- You only pay for what you use, e.g, compute time, storage