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Text is everywhere
We use documents as primary information artifact in our lives

Our access to documents has grown tremendously thanks to the Internet

• WWW: webpages, Twitter, Facebook, Wikipedia, Blogs, ...

• Digital libraries: Google books, ACM, IEEE, ...

• Lyrics, closed caption... (youtube)

• Police case reports

• Legislation (law)

• Reviews (products, rotten tomatoes)

• Medical reports (EHR - electronic health records)

• Job descriptions
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Big (Research) Questions
... in understanding and gathering information from text and 
document collections

• establish authorship, authenticity; plagiarism detection

• classification of genres for narratives (e.g., books, articles)

• tone classification; sentiment analysis (online reviews, 
twitter, social media)

• code: syntax analysis (e.g., find common bugs from 
students’ answers)

�3



Popular Natural Language Processing 
(NLP) libraries

• Stanford NLP

• OpenNLP

• NLTK (python)
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tokenization, sentence segmentation, part-of-
speech tagging, named entity extraction, 
chunking, parsing

Image source: https://stanfordnlp.github.io/CoreNLP/



Outline
• Preprocessing (e.g., stemming, remove stop words)

• Document representation (most common: bag-of-
words model)

• Word importance (e.g., word count, TF-IDF)

• Latent Semantic Indexing (find “concepts” among 
documents and words), which helps with retrieval

To learn more:  
CS 4650/7650 Natural Language Processing
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Stemming
Reduce words to their stems (or base forms)

Words: compute, computing, computer, ...
Stem: comput

Several classes of algorithms to do this:

• Stripping suffixes, lookup-based, etc.
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http://en.wikipedia.org/wiki/Stemming
Stop words: http://en.wikipedia.org/wiki/Stop_words

http://en.wikipedia.org/wiki/Stemming
http://en.wikipedia.org/wiki/Stop_words


Bag-of-words model
Represent each document as a bag of words, ignoring 
words’ ordering. Why? For simplicity.

Unstructured text becomes a vector of numbers
e.g., docs: “I like visualization”, “I like data”.

1 : “I”
2 : “like”
3 : “data”
4 : “visualization”

“I like visualization” ➡  [1, 1, 0, 1]
“I like data” ➡  [1, 1, 1, 0]
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TF-IDF  
A word’s importance score in a document, among N documents

When to use it? Everywhere you use “word count”, you 
can likely use TF-IDF.

TF: term frequency  
= #appearance a document  
   (high, if terms appear many times in this document)

IDF: inverse document frequency  
= log( N / #document containing that term) 
   (penalize “common” words appearing in almost any documents)

Final score = TF * IDF 
(higher score ➡ more “characteristic”)

�8Example: http://en.wikipedia.org/wiki/Tf–idf#Example_of_tf.E2.80.93idf

http://en.wikipedia.org/wiki/Tf%E2%80%93idf#Example_of_tf.E2.80.93idf


Vector Space Model 
Why?

Each document ➡ vector
Each query ➡ vector

Search for documents ➡ find “similar” vectors
Cluster documents ➡ cluster “similar” vectors



Main idea
• map each document into some ‘concepts’
• map each term into some ‘concepts’

‘Concept’ : ~ a set of terms, with weights.  

For example, DBMS_concept: 
“data” (0.8),  
“system” (0.5),  

Latent Semantic Indexing (LSI)



Latent Semantic Indexing (LSI) 
~ pictorially (before) ~

data system retireval lung ear
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document-term matrix 



Latent Semantic Indexing (LSI) 
~ pictorially (after) ~
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Q: How to search, e.g., for “system”?  
A: find the corresponding concept(s); and the 
corresponding documents

Latent Semantic Indexing (LSI)
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Works like an automatically constructed thesaurus

We may retrieve documents that DON’T have the 
term “system”, but they contain almost everything 
else (“data”, “retrieval”)

Latent Semantic Indexing (LSI)



LSI - Discussion
Great idea, 

• to derive ‘concepts’ from documents
• to build a ‘thesaurus’ automatically
• to reduce dimensionality (down to few “concepts”)

How does LSI work?  
Uses Singular Value Decomposition (SVD)



Problem #1 
Find “concepts” 
in matrices

Problem #2
Compression / 
dimensionality 
reduction
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Singular Value Decomposition (SVD) 
Motivation



SVD is a powerful, 
generalizable technique.

Songs / Movies / Products
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SVD Definition (pictorially)
A[n x m] = U[n x r] Λ [r x r] (V[m x r])T

= x xn

m r

r
rn

m
r

n documents 
m terms

n documents 
r concepts

Diagonal matrix  
Diagonal entries: 
concept strengths

m terms 
r concepts



A: n x m matrix  
    e.g., n documents, m terms
U: n x r matrix  
    e.g., n documents, r concepts
Λ: r x r diagonal matrix  
    r : rank of the matrix; strength of each ‘concept’
V: m x r matrix 
    e.g., m terms, r concepts

SVD Definition (in words)
A[n x m] = U[n x r] Λ [r x r] (V[m x r])T



SVD - Properties
THEOREM [Press+92]:  

always possible to decompose matrix A into  
A = U Λ VT

U, Λ, V: unique, most of the time
U, V: column orthonormal 
         i.e., columns are unit vectors, and orthogonal to each other

UT U = I
VT V = I

 Λ: diagonal matrix with non-negative diagonal entires, 
sorted in decreasing order

(I: identity matrix)



SVD - Example A =  U     Λ     VT
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SVD - Interpretation #1
‘documents’, ‘terms’ and ‘concepts’:

U: document-concept similarity matrix
V: term-concept similarity matrix
Λ: diagonal elements: concept “strengths”



SVD - Interpretation #1
‘documents’, ‘terms’ and ‘concepts’:
Q: if A is the document-to-term matrix,  

what is the similarity matrix AT A ?
A:

Q: A AT ?
A:



SVD - Interpretation #1
‘documents’, ‘terms’ and ‘concepts’:
Q: if A is the document-to-term matrix,  

what is the similarity matrix AT A ?
A: term-to-term ([m x m]) similarity matrix

Q: A AT ?
A: document-to-document ([n x n]) similarity matrix



V are the eigenvectors of the covariance matrix ATA

U are the eigenvectors of the Gram (inner-product) 
matrix AAT

SVD properties

SVD is closely related to PCA, and can be numerically more stable. 
For more info, see:

http://math.stackexchange.com/questions/3869/what-is-the-intuitive-relationship-between-svd-and-pca  
Ian T. Jolliffe, Principal Component Analysis (2nd ed), Springer, 2002. Gilbert Strang, Linear Algebra and 
Its Applications (4th ed), Brooks Cole, 2005.

ATA

AAT

http://math.stackexchange.com/questions/3869/what-is-the-intuitive-relationship-between-svd-and-pca


SVD - Interpretation #2
Find the best axis to project on. 

  (‘best’ = min sum of squares of projection errors) 

min RMS errorv1

First 
Singular 
Vector

Beautiful visualization explaining PCA:  
http://setosa.io/ev/principal-component-analysis/



SVD - Interpretation #2
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U Λ  gives the coordinates of 
the points in the projection axis

SVD - Interpretation #2
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SVD - Interpretation #2
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More details
Q: how exactly is dim. reduction done?



SVD - Interpretation #2
More details
Q: how exactly is dim. reduction done?
A: set the smallest singular values to zero:
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SVD - Interpretation #2
More details
Q: how exactly is dim. reduction done?
A: set the smallest singular values to zero:
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SVD - Interpretation #2
More details
Q: how exactly is dim. reduction done?
A: set the smallest singular values to zero:
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SVD - Interpretation #2
More details
Q: how exactly is dim. reduction done?
A: set the smallest singular values to zero:
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0 0 0 2 2
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~
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SVD - Interpretation #3
finds non-zero ‘blobs’ in  a data matrix

= x x



SVD - Interpretation #3
finds non-zero ‘blobs’ in  a data matrix

= x x



SVD - Interpretation #3
• finds non-zero ‘blobs’ in  a data matrix =
• ‘communities’ (bi-partite cores, here)

Row 1

Row 4

Col 1

Col 3

Col 4Row 5

Row 7



SVD - Complexity
O(n*m*m) or O(n*n*m) (whichever is less)

Faster version, if just want singular values
     or if we want first k singular vectors
     or if the matrix is sparse [Berry]

No need to write your own! 
Available in most linear algebra packages 
(LINPACK, matlab, Splus/R, 
mathematica ...)



Case Study 
How to do queries with LSI?



For example, how to find documents with ‘data’?  

Case Study 
How to do queries with LSI?
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For example, how to find documents with ‘data’?  
A: map query vectors into ‘concept space’ – how?

Case Study 
How to do queries with LSI?

da
ta

inf
o

bra
in

ret
rie

va
l

lun
g

1 1 1 0 0
2 2 2 0 0
1 1 1 0 0
5 5 5 0 0
0 0 0 2 2
0 0 0 3 3
0 0 0 1 1

0.18 0

0.36 0

0.18 0

0.90 0

0 0.53

0 0.80

0 0.27

9.64 0

0 5.29

0.58 0.58 0.58 0 0

0 0 0 0.71 0.71

CS
docs

MD
docs

= x x



For example, how to find documents with ‘data’?  
A: map query vectors into ‘concept space’, using 
inner product (cosine similarity) with each 
‘concept’ vector vi

Case Study 
How to do queries with LSI?
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Compactly, we have:

Case Study 
How to do queries with LSI?
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Case Study 
How would the document 

(‘information’, ‘retrieval’) be handled?



Case Study 
How would the document 

(‘information’, ‘retrieval’) be handled?
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Document (‘information’, ‘retrieval’) will be 
retrieved by query (‘data’), even though it does 
not contain ‘data’!!

1.16 0
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Case Study 
Observation



Switch Gear to  
Text Visualization
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Word/Tag Cloud (still popular?)

http://www.wordle.net
�48

http://www.wordle.net


Word Counts (words as bubbles)

http://www.infocaptor.com/bubble-my-page �49

http://www.infocaptor.com/bubble-my-page


Word Tree

http://www.jasondavies.com/wordtree/
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http://www.jasondavies.com/wordtree/


Phrase Net
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Visualize pairs of words satisfying a pattern (“X and Y”)

http://hint.fm/projects/phrasenet/



Termite: Topic Model Visualization
http://vis.stanford.edu/papers/termite



Termite: Topic Model VisualizationAnaly

http://vis.stanford.edu/papers/termite

Using “Seriation”


