http://poloclub.gatech.edu/cse6242 CSE6242: Data & Visual Analytics

MMap (Memory Mapping) Simple, minimalist approach to scale up computation

Duen Horng (Polo) Chau

Associate Professor, College of Computing Associate Director, MS Analytics Georgia Tech

Mahdi Roozbahani

Lecturer, Computational Science & Engineering, Georgia Tech Founder of Filio, a visual asset management platform

Partly based on materials by Professors Guy Lebanon, Jeffrey Heer, John Stasko, Christos Faloutsos

When should you use Spark/Hadoop, AWS, Azure?

And when should you not?

MAAD Fast Billion-Scale Graph Computation on a PC via Memory Mapping

Lead by **Zhiyuan (Jerry) Lin** Georgia Tech CS Undergrad

Now: Stanford PhD student

MMap: Fast Billion-Scale Graph Computation on a PC via Memory Mapping. Zhiyuan Lin, Minsuk Kahng, Kaeser Md. Sabrin, Duen Horng Chau, Ho Lee, and U Kang. *Proceedings of IEEE BigData 2014 conference*. Oct 27-30, Washington DC, USA.

Towards Scalable Graph Computation on Mobile Devices. Yiqi Chen, Zhiyuan Lin, Robert Pienta, Minsuk Kahng, Duen Horr

Graph Computation on Computer Cluster?

Steep learning curve

Cost

Overkill for smaller graphs

Image source: http://www.drupaltky.org/en/article/20

Best-of-breed Single-PC Approaches

- GraphChi OSDI 2012
- TurboGraph KDD 2013

What do they have in common?

- Sophisticated Data Structures
- Explicit Memory Management

Can We Do Less? To get same or better performance? e.g., auto memory management, faster, etc.

Main Idea: Memory-mapped the Graph

Can initialize this vector to any non-zero vector, e.g., all "1"s

Example: PageRank (implemented using MMap)

http://www.cc.gatech.edu/~dchau/papers/14-bigdata-mmap.pdf

Fig. 3: Data structures used for computing PageRank. In

(c) YahooWeb graph (6.6B edges)

1-step Neighbor Query Runtime on YahooWeb Graph (6.6 billion edges)

т т

Why Memory Mapping Works?

High-degree nodes' info automatically cached/kept in memory for future frequent access

Read-ahead paging preemptively loads edges from disk.

Highly-optimized by the OS

No need to explicitly manage memory (less book-keeping)

Also works on tablets! (If you want.) Big Data on Small Devices (270M+ Edges)

"Mobile" devices are now very powerful

Geekbench Results

		Chip	Single-Core Score	Multi-Core Score
	2018 iPad Pro	A12X	5,025	18,106
	iPhone XS / XS Max / XR	A12	4,795	11,167
	2017 iPad Pro	A10X	3,913	9,327
	2018 iPad	A10	3,474	5,914
		2.2GHz six-core Core i7	4,928	21,165
	2018 15" MacBook Pro	2.6GHz six-core Core i7	5,053	21,351
		2.9GHz six-core Core i9	5,344	22,552

MacRumors

https://www.macrumors.com/2018/11/01/2018-ipad-pro-benchmarks-geekbench/

Lead by **Dezhi (Andy) Fang,** Georgia Tech CS Undergrad. Now: Airbnb software engineer

MMap project website http://poloclub.gatech.edu/mmap/

MMap Publications Code Datasets People

Scalable Machine Learning & Graph Mining via Virtual Memory

Memory Mapping based computation is a minimalist approach that forgoes sophisticated data structures, explicit memory management, and optimization techniques but still achieve high speed and scalability, by leveraging the fundamental memory mapping (MMap) capability found on operating systems.

Broader Impacts of this Project

Large datasets in terabytes or petabytes are increasingly common, calling for new kinds of scalable machine learning approaches. While state-of-the-art techniques often use complex designs, specialized methods to store and work with large datasets, this project proposes a minimalist approach that forgoes such complexities, by leveraging the fundamental virtual memory capability found on all modern operating systems, to load into the virtual memory space the large datasets

