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Clustering
The most common type of unsupervised learning

High-level idea: group similar things together

“Unsupervised” because clustering model is 
learned without any labeled examples 
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Applications of Clustering

• Find similar patients subgroups

• e.g., in healthcare

• Finding groups of similar text documents (topic 
modeling)

• …
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Clustering techniques you’ve got to know

K-means
Hierarchical Clustering
DBSCAN
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K-means (the “simplest” technique)

Algorithm Summary
• We tell K-means the value of k (#clusters we want)

• Randomly initialize the k cluster “means” (“centroids”)

• Assign each item to the the cluster whose mean the item 
is closest to (so, we need a similarity function)

• Update/recompute the new “means” of all k clusters.

• If all items’ assignments do not change, stop.

8YouTube video demo: https://youtu.be/IuRb3y8qKX4?t=3m4s

Best D3 demo Polo could find: http://tech.nitoyon.com/en/blog/2013/11/07/k-means/

https://youtu.be/IuRb3y8qKX4?t=3m4s
http://tech.nitoyon.com/en/blog/2013/11/07/k-means/


K-means What’s the catch?

How to decide k (a hard problem)?
• A few ways; best way is to evaluate with real data

(https://www.ee.columbia.edu/~dpwe/papers/PhamDN05-kmeans.pdf)

Only locally optimal (vs global)
• Different initialization gives different clusters

• How to “fix” this?
• “Bad” starting points can cause algorithm to converge slowly

• Can work for relatively large dataset
• Time complexity O(d n log n) per iteration 

(assumptions: n >> k, dimension d is small)
http://www.cs.cmu.edu/~./dpelleg/download/kmeans.ps
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http://nlp.stanford.edu/IR-book/html/htmledition/evaluation-of-clustering-1.html

https://www.ee.columbia.edu/%7Edpwe/papers/PhamDN05-kmeans.pdf
http://www.cs.cmu.edu/%7E./dpelleg/download/kmeans.ps


Hierarchical clustering
High-level idea: build a tree (hierarchy) of clusters

Dendrogram



Ways to calculate distances
between two clusters 

Single linkage
• minimum of distance between clusters

• similarity of two clusters = similarity of 
the clusters’ most similar members

Complete linkage
• maximum of distance between clusters

• similarity of two clusters = similarity of 
the clusters’ most dissimilar members

Average linkage
• distance between cluster centers 
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https://bl.ocks.org/mbostock/4063570
https://bl.ocks.org/mbostock/4339607



Hierarchical clustering for large datasets?

• OK for small datasets (e.g., <10K items)

• Time complexity between O(n^2) to O(n^3)
where n is the number of data items

• Not good for millions of items or more

• But great for understanding concept of 
clustering
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DBSCAN
Received “test-of-time award” at KDD’14 — an 
extremely prestigious award.
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“Density-based spatial clustering with noise”
https://en.wikipedia.org/wiki/DBSCAN

Only need two parameters: 
1. “radius” epsilon
2. minimum number of points (e.g., 4) required 

to form a dense region
Yellow “border points” are density-reachable from red “core points”, but not vice-versa.

https://en.wikipedia.org/wiki/DBSCAN


Interactive DBSCAN Demo
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Only need two parameters: 
1. “radius” epsilon
2. minimum number of points (e.g., 4) required to form a dense region
Yellow “border points” are density-reachable from red “core points”, but not vice-versa.

https://www.naftaliharris.com/blog/visualizing-dbscan-clustering/

https://www.naftaliharris.com/blog/visualizing-dbscan-clustering/


You can use DBSCAN now.
http://scikit-learn.org/stable/modules/generated/sklearn.cluster.DBSCAN.html
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http://scikit-learn.org/stable/modules/generated/sklearn.cluster.DBSCAN.html
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http://scikit-learn.org/dev/auto_examples/cluster/plot_cluster_comparison.html#sphx-
glr-auto-examples-cluster-plot-cluster-comparison-py



Visualizing Clusters



D3 has some built-in techniques
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https://github.com/mbostock/d3/wiki/Hierarchy-Layout



Visualizing Topics as Matrix 
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Termite: Visualization Techniques for Assessing Textual Topic Models
Jason Chuang, Christopher D. Manning, Jeffrey Heer. AVI 2012.
http://vis.stanford.edu/papers/termite

http://vis.stanford.edu/papers/termite


Visualizing Topics as Matrix 
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Termite: Visualization Techniques for Assessing Textual Topic Models
Jason Chuang, Christopher D. Manning, Jeffrey Heer. AVI 2012.
http://vis.stanford.edu/papers/termite

http://vis.stanford.edu/papers/termite


Termite: Topic Model VisualizationAnaly

http://vis.stanford.edu/papers/termite

Using “Seriation”
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Visualizing Graph Communities 
(using colors)



Visualizing Graph Communities
(using colors and convex hulls)
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http://www.cc.gatech.edu/~dchau/papers/11-chi-apolo.pdf



Visualizing Graph Communities as Matrix 
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https://bost.ocks.org/mike/miserables/ Require good node ordering!



Visualizing Graph Communities as Matrix 
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Require good node ordering!

Fully-automated way: “Cross-associations”
http://www.cs.cmu.edu/~christos/PUBLICATIONS/kdd04-cross-assoc.pdf

http://www.cs.cmu.edu/%7Echristos/PUBLICATIONS/kdd04-cross-assoc.pdf
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