CSE6242: Data & Visual Analytics

Graphs / Networks

Basics how to build & store graphs, laws, etc. Centrality, and algorithms you should know

Duen Horng (Polo) Chau

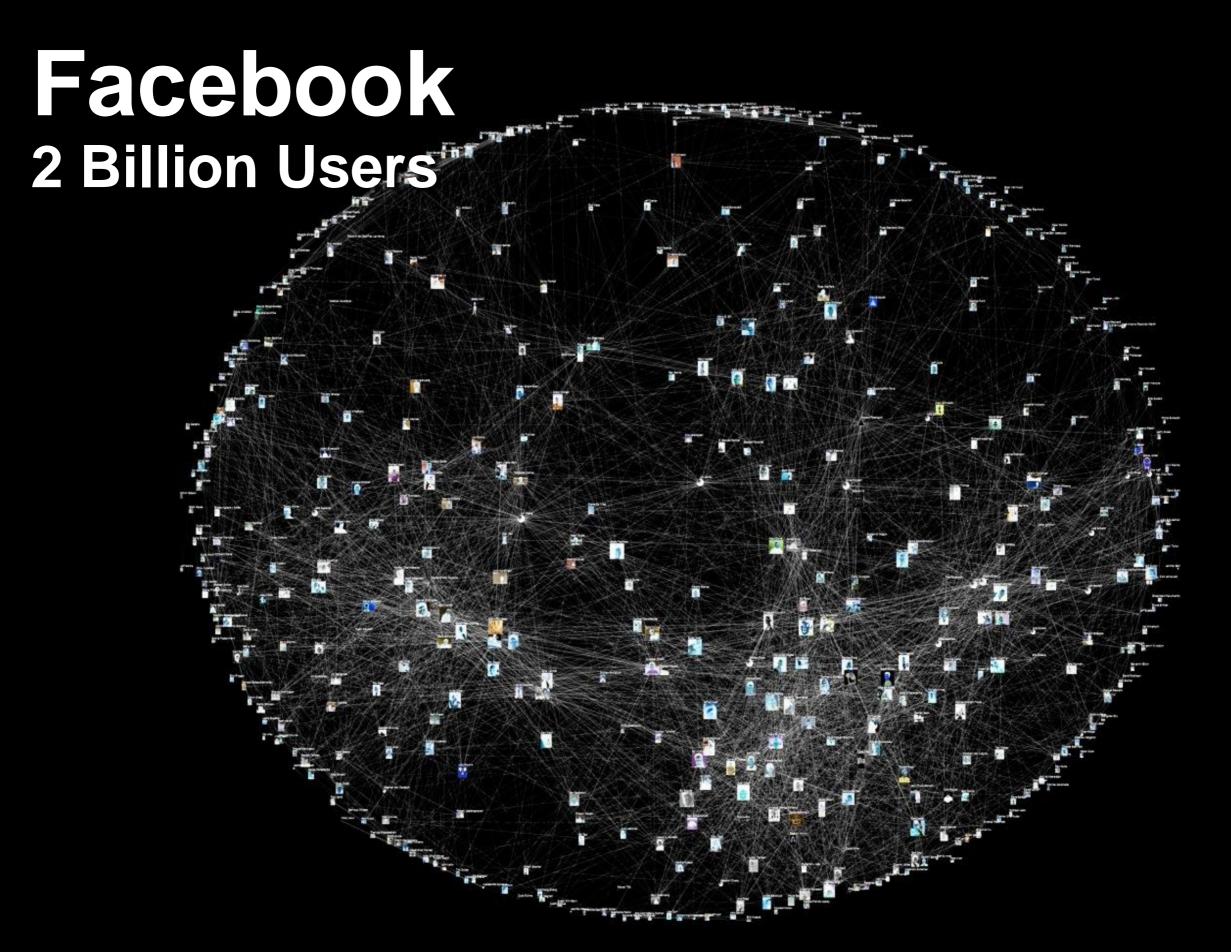
Associate Professor, College of Computing Associate Director, MS Analytics Georgia Tech

Mahdi Roozbahani

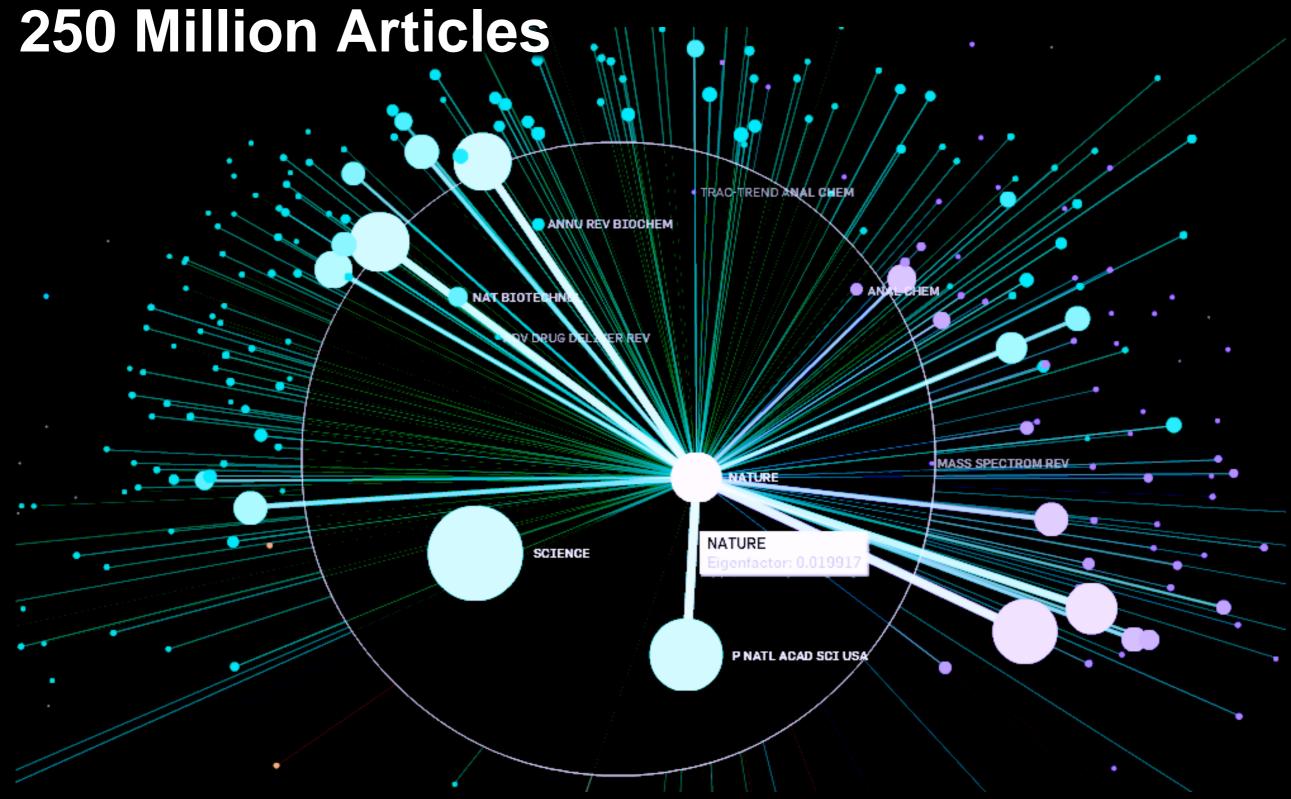
Lecturer, Computational Science & Engineering, Georgia Tech Founder of Filio, a visual asset management platform

Partly based on materials by Professors Guy Lebanon, Jeffrey Heer, John Stasko, Christos Faloutsos





Citation Network



Many More

Who-follows-whom (288 million users)

Who-buys-what (120 million users)

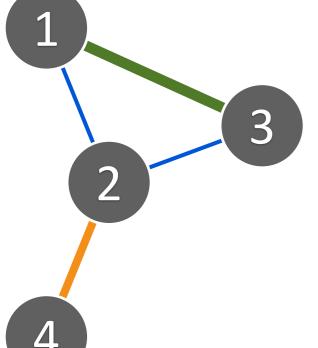
Protein-protein interactions

200 million possible interactions in human genome

How to represent a graph?

Conceptually.
Visually.
Programmatically.

How to Represent a Graph?



Adjacency matrix

Target node

		2		4
1	0	1 0 1 0	3	0
2	0	0	0	2
3	0	1	0	0
4	0	0	0	0

Adjacency list

1: 2, 3 2: 4 3: 2

Edge list

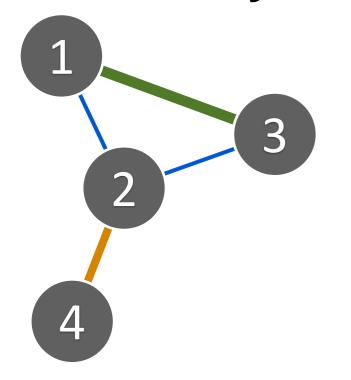
Source

node

- 1, 2, 1 1, 3, 3 2, 4, 2 3, 2, 1
- most common distribution format
- sometimes painful to parse when edges/nodes have many columns (some are text with double/single quotes, some are integers, some decimals, ...)

How to Represent a Graph?

Visually



Adjacency matrix Adjacency list

		Tar	get	nod	е
		1	2	3	4
	1	0	1	3	0
Source	2	0	0	0	2
node	3	0	1	0	0
	4		\cap	\cap	\cap

1:	2,	
2:	4	
3:	2	

Edge list

1, 2, 1 1, 3, 3 2, 4, 2 3, 2, 1

Each node is often identified by a numeric ID. Why?

Assigning an ID to a node

- Use a "map" (Java) / "dictionary" (Python) / SQLite
- Same concept: given an entity/node (e.g., "Tom") not seen before, assign a number to it
- Example of using SQLite to map names to IDs

Hidden column; SQLite automatically created for you

rowid	name
1	Tom
2	Sandy
3	Richard
4	Polo

How to use the node IDs?

Create an index for "name". Then write a "join" query.

rowid	name		
1	Tom	source	target
2	Sandy	Tom	Sandy
3	Richard	Polo	Richard
4	Polo		↓

source	target
1	2
4	3

How to store "large" graphs?

How large is "large"?

What do you think?

In what units? Thousands? Millions?

How do you measure a graph's size?

• By ...

(Hint: highly subjective. And domain specific.)

Storing large graphs...

On your laptop computer

- SQLite
- Neo4j (GPL license)
 http://neo4j.com/licensing/

On a server

- MySQL, PostgreSQL, etc.
- Neo4j (?)

Storing large graphs...

With a cluster

- Titan (on top of HBase), S2Graph if you need real time read and write
- Hadoop (generic framework) if batch processing is fine
- Hama, Giraph, inspired by Google's Pregel
- FlockDB, by Twitter
- Turri (Apple) / Dato / GraphLab

Storing large graphs on your computer

I like to use SQLite. Why? Good enough for my use.

- Easily handle up to gigabytes
 - Roughly tens of millions of nodes/edges (perhaps up to billions?). Very good! For today's standard.
- Very easy to maintain: one cross-platform file
- Has programming wrappers in numerous languages
 - C++, Java (Andriod), Python, Objective C (iOS),...
- Queries are so easy!
 e.g., find all nodes' degrees = 1 SQL statement
- Bonus: SQLite even supports full-text search
- Offline application support (iPad)

SQLite graph database schema

Simplest schema:

```
edges(source_id, target_id)
```

More sophisticated (flexible; lets you store more things):

```
CREATE TABLE nodes (
   id INTEGER PRIMARY KEY,
   type INTEGER DEFAULT 0,
   name VARCHAR DEFAULT '');

CREATE TABLE edges (
   source_id INTEGER,
   target_id INTEGER,
   type INTEGER DEFAULT 0,
   weight FLOAT DEFAULT 1,
   timestamp INTEGER DEFAULT 0,
   PRIMARY KEY(source_id, target_id, timestamp));
```

[Side note; you already did this in HW1]

Full-Text Search (FTS) on SQLite

http://www.sqlite.org/fts3.html

Very simple. Built-in. Only needs 3 lines of commands.

Create FTS table (index)

```
CREATE VIRTUAL TABLE critics_consensus USING
fts4(consensus);
```

Insert text into FTS table

```
INSERT INTO critics_consensus SELECT
critics_consensus FROM movies;
```

Query using the "match" keyword

```
SELECT * FROM critics_consensus WHERE consensus MATCH
'funny OR horror';
```

SQLite originally developed by Google engineers

I have a graph dataset. Now what?

Analyze it! Do "data mining" or "graph mining".

How does it "look like"? Visualize it if it's small.

- Why does this matter?
- If we know the patterns (models), we can do prediction, recommendation, etc.
 - e.g., is Alice going to "friend" Bob on Facebook? People often buy beer and diapers together.
- Outliers often give us new insights
 e.g., telemarketer's "friends" don't know each other

Finding patterns & outliers in graphs

Outlier/Anomaly detection

- To spot them, we need to find patterns first
- Anomalies = things that do not fit the patterns

To effectively do this, we need large datasets

patterns and anomalies don't show up well in small datasets

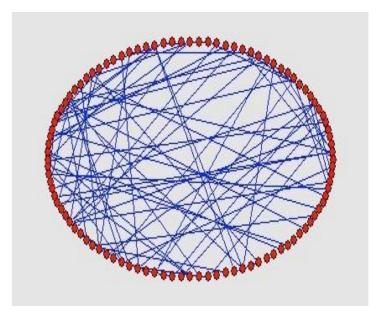
Are real graphs random?

Random graph (Erdos-Renyi) 100 nodes, avg degree = 2

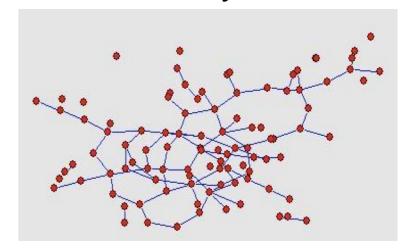
http://en.wikipedia.org/wiki/Erdős-Rényi_model

No obvious patterns

Before layout



After layout



Graph and layout generated with pajek

http://vlado.fmf.uni-lj.si/pub/networks/pajek/

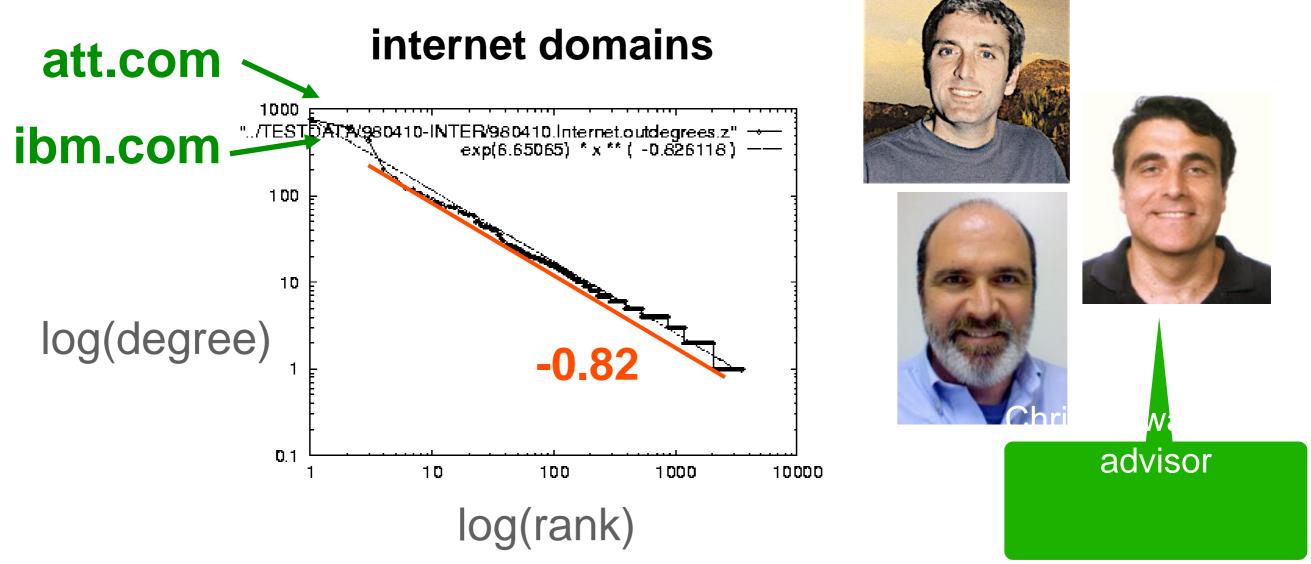
Laws and patterns

Are real graphs random?

- A: NO!!!
 - Diameter (longest shortest path)
 - in- and out- degree distributions
 - other (surprising) patterns
 - · So, let's look at the data

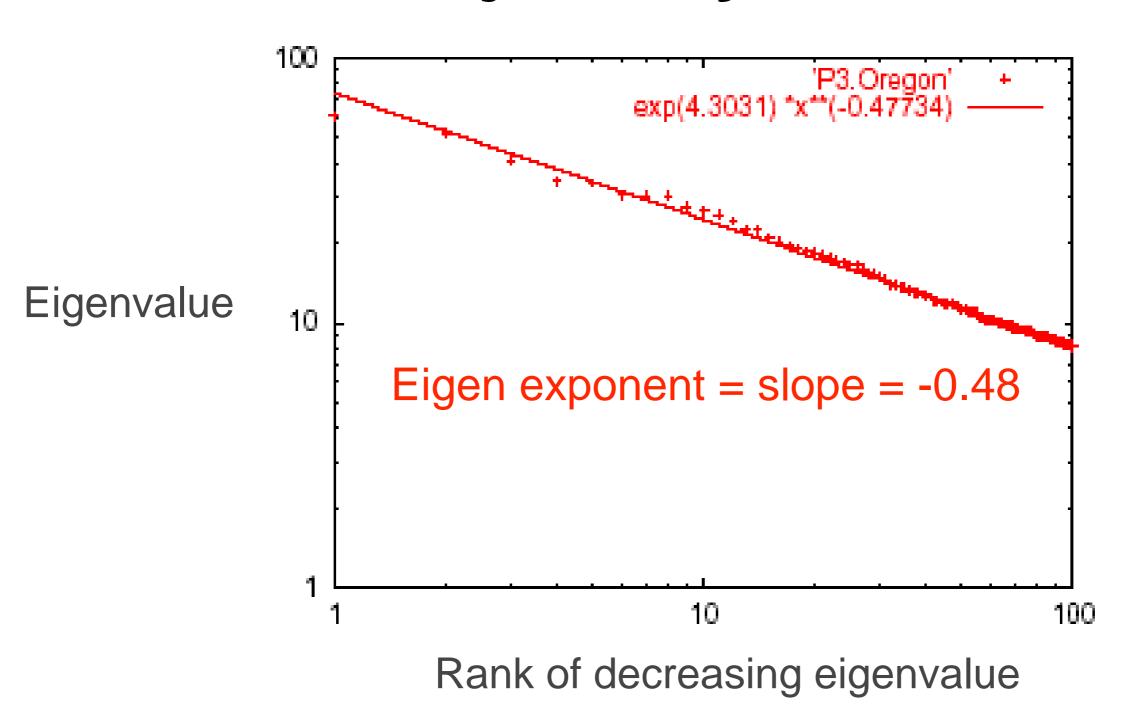
Power Law in Degree Distribution

Faloutsos, Faloutsos, Faloutsos [SIGCOMM99] Seminal paper. Must read!



Zipf's law: the <u>frequency of any item</u> is <u>inversely proportional</u> to the <u>item's rank</u> (when ranked by decreasing frequency)

Power Law in Eigenvalues of Adjacency Matrix

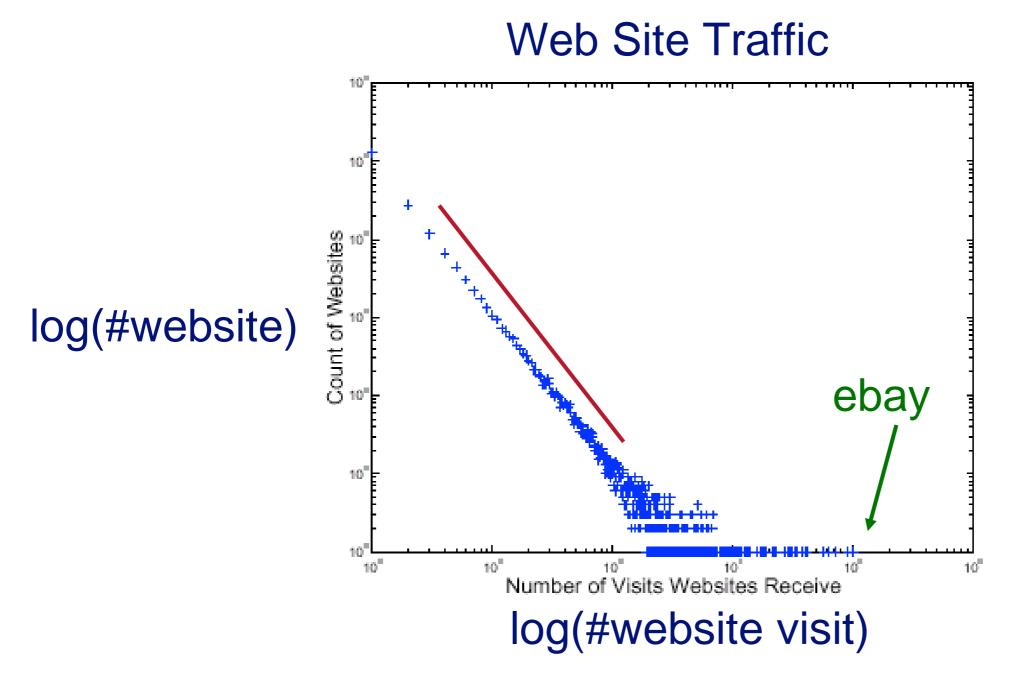


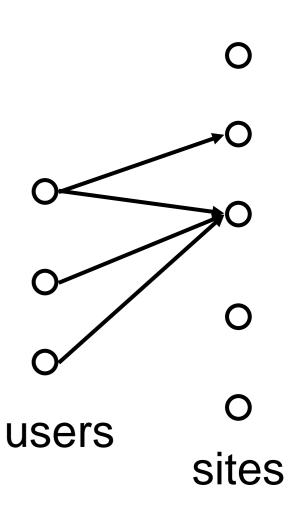
How about graphs from other domains?

More Power Laws

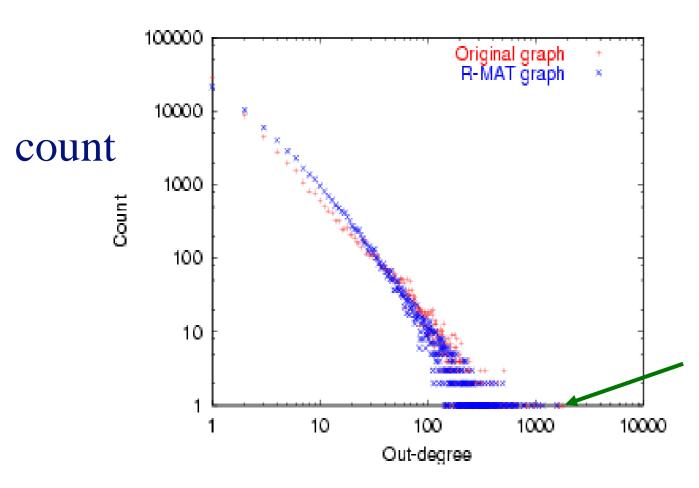
Web hit counts

[Alan L. Montgomery and Christos Faloutsos]





epinions.com



who-trusts-whom
 [Richardson +
 Domingos, KDD 2001]

trusts-2000-people user

(out) degree

And numerous more

- # of sexual contacts
- Income [Pareto] 80-20 distribution
- Duration of downloads [Bestavros+]
- Duration of UNIX jobs
- File sizes

•

Any other 'laws'?

- Yes!
- Small diameter (~ constant!)
 - six degrees of separation / 'Kevin Bacon'
 - small worlds [Watts and Strogatz]

Problem: Time evolution

- Jure Leskovec (CMU -> Stanford)
- Jon Kleinberg (Cornell)
- Christos Faloutsos (CMU)

Evolution of the Diameter

- Prior work on Power Law graphs hints at slowly growing diameter:
 - diameter ~ O(log N)
 - diameter ~ O(log log N)

What is happening in real data?

Evolution of the Diameter

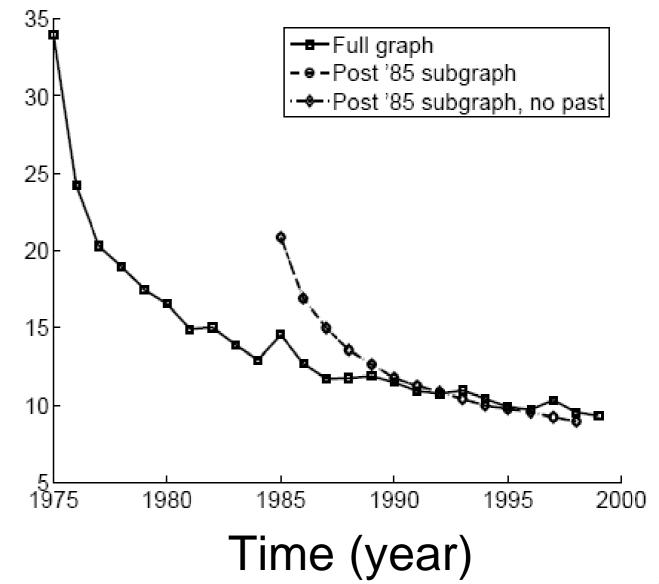
- Prior work on Power Law graphs hints at slowly growing diameter:
 - diameter ~ (log N)
 - diameter Q(log log N)

- What is happening in real data?
- Diameter shrinks over time

Diameter – Patents Network

- Patent citation network
- 25 years of data
- @1999
 - 2.9 M nodes
 - 16.5 M edges

Effective diameter



Why Effective Diameter?

The maximum diameter is susceptible to outliers

So, we use effective diameter instead

defined as the minimum number of hops in which
 90% of connected node pairs can reach each other

Evolution of #Node and #Edge

- N(t) ... nodes at time t
- E(t) ... edges at time t

Suppose that

$$N(t+1) = 2 * N(t)$$

Q: what is your guess for

$$E(t+1) = ? 2 * E(t)$$

Evolution of #Node and #Edge

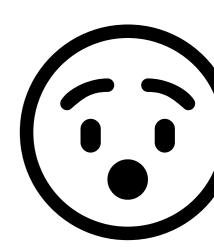
- N(t) ... nodes at time t
- E(t) ... edges at time t
- Suppose that

$$N(t+1) = 2 * N(t)$$

Q: what is your guess for

$$E(t+1) = ?2 * E(t)$$

But obeying the "Densification Power Law"



Densification – Patent Citations

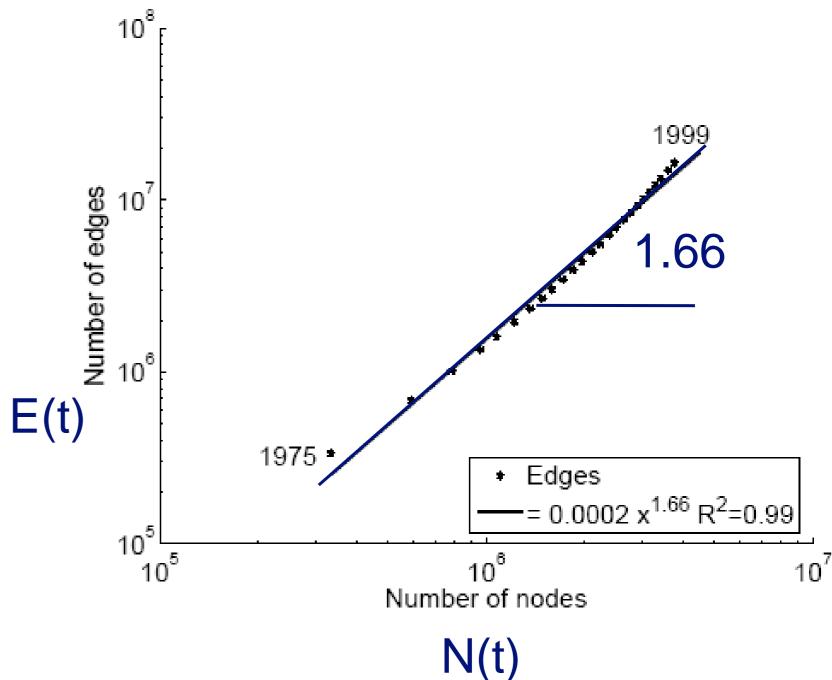
Citations among patents granted

@1999

2.9 M nodes

• 16.5 M edges

Each year is a datapoint



So many laws!

There will be more to come...

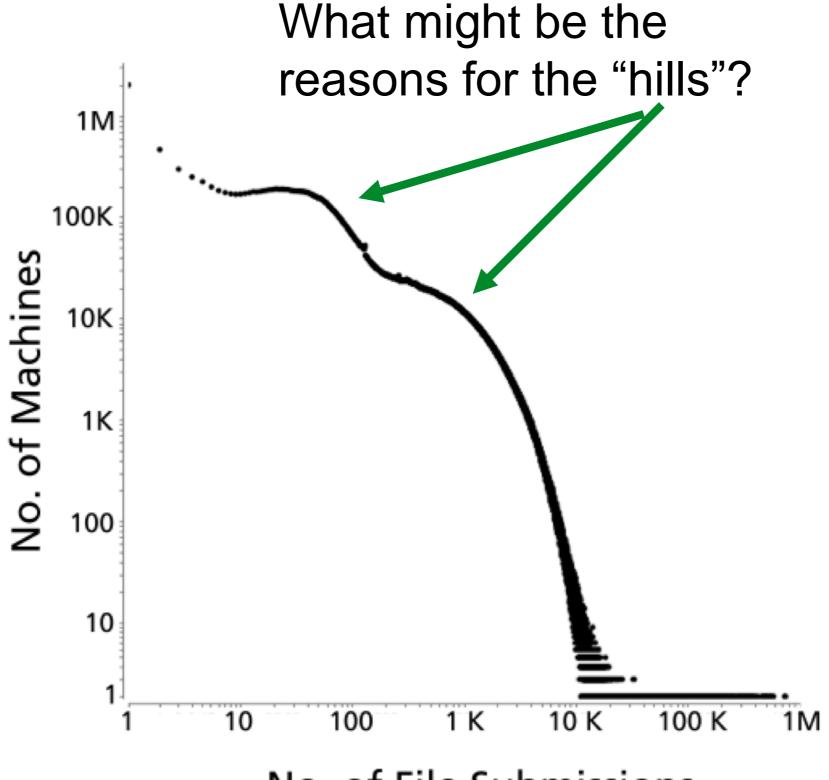
To date, there are 11 (or more) laws

- RTG: A Recursive Realistic Graph Generator using Random Typing [Akoglu, Faloutsos]
 - **L01** Power-law degree distribution: the degree distibution should follow a power-law in the form of $f(d) \propto d^{\gamma}$, with the exponent $\gamma < 0$ [5, 11, 16, 24]
 - **L02** Densification Power Law (DPL): the number of nodes N and the number of edges E should follow a power-law in the form of $E(t) \propto N(t)^{\alpha}$, with $\alpha > 1$, over time [20].
 - **L03** Weight Power Law (WPL): the total weight of the edges W and the number of edges E should follow a power-law in the form of $W(t) \propto E(t)^{\beta}$, with $\beta > 1$, over time [22].
 - **L04** Snapshot Power Law (SPL): the total weight of the edges W_n attached to each node and the number of such edges, that is, the degree d_n should follow a power-law in the form of $W_n \propto d_n^{\theta}$, with $\theta > 1$ [22].
 - **L05** Triangle Power Law (TPL): the number of triangles Δ and the number of nodes that participate in Δ number of triangles should follow a power-law in the form of $f(\Delta) \propto \Delta^{\sigma}$, with $\sigma < 0$ [29].
 - **L06** Eigenvalue Power Law (EPL): the eigenvalues of the adjacency matrix of the graph should be power-law distributed [28].
 - **L07** Principal Eigenvalue Power Law $(\lambda_1 PL)$: the largest eigenvalue λ_1 of the

So many laws!

What should you do?

- Try as many distributions as possible and see if your graph fits them.
- If it doesn't, find out the reasons.
 Sometimes it's due to errors/problems in the data; sometimes, it signifies some new patterns!



No. of File Submissions

Polonium: Tera-Scale Graph Mining and Inference for Malware Detection [Chau, et al]