Information Visualization Crash Course

(AKA Information Visualization 101)

Chad Stolper Google

 (graduated from Georgia Tech CS PhD)

What is Infovis?

Why is it Important?

Human Perception
Chart Basics
(If Time, Some Color Theory)
The Shneiderman Mantra
Where to Learn More

What is Information Visualization?

Information Visualization

"The use of computer-supported, interactive, visual representations of abstract data to amplify cognition."

Card, Mackinlay, and Shneiderman 1999

Communication

Exploratory Data Analysis (EDA)

Communication (gone wrong)

EDWARD R.TUFTE

VISUAL EXPLANATIONS

IMAGES AND QUANTITIES, EVIDENCE AND NARRATIVE

Edward Tufte

An American statistician and professor emeritus of political science, statistics, and computer science at Yale University.

He is noted for his writings on information design and as a pioneer in the field of data visualization.
-Wikipedia

Space Shuttle Challenger January 28, 1986 Morning Temperature: $31^{\circ} \mathrm{F}$

Less than 1 second after ignition, a puff of smoke appeared at the aft joint of the right booster, indicating that the O-rings burned through and failed to seal. At this point, all was lost.

On the launch pad, the leak lasted only about 2 seconds and then apparently mat plaszod hy and insulation as the shuttle rose, flying through rather strong cross-winds. Then sti- Tit werer ignition, when the Challenger was 6 miles up, a flicker of flame emerged from the halyjur seconds, the flame grew and engulfed the fuel tank (containing liquid hydrugen onl had and That tank rupeured and exploded, destroying the shuttle.

As the shurtle exploded and broke up at approximately 73 scoonds after launch, the two booster rockets crisscrossed and continued Aying wildly. The righe booster, identifiable by its failure plume, is now to the left of its non-defective counterpart.

The flight crew of Challenger $51-L$. Froot $v 0=, k f=n+1$ Smith, pilot; Francis R. (Dick) Scobor, commoder, Rmal Back row: Ellison S. Onizuka, S. Chrica Mck liff, Coyb Judith A. Resnik.

Rubber O-rings, nearly 38 feet (11.6 meters) in circumference;
$1 / 4$ inch (6.4 mm) thick.

The field joint that leaked.

Tufte, E. R. (2012). Visual explanations: images and quantities, evidence and narrative. Cheshire, CT: Graphics Press.

Most Watched Science Experiment

Richard Feynman, Physics
Nobel laureate explained how rubber became rigid in cold temperate

YouTube video:
https://youtu.be/6Rwcbsn19c0

How did this happen?

Engineers at Morton Thiokol, the rocket maker, presented on the day before and recommended not to launch.

$$
\begin{aligned}
& \text { TEMPERATURE CONCERN ON } \\
& \text { SRM JOINTS } \\
& 27 \text { JAN } 1986
\end{aligned}
$$

CONCLUSIONS:

- TEMPERATURE OF ORANG IS NOT ONLY PARAMETER CONTROLLING BLOW-BY

SRO IS WITH BLOW BY HAD AN DARING TEMP AT SB ${ }^{\circ} F$
 FOUR DEVELOFMILNT MOTORS WITH NO BLOW BY WERE TESTED AT OWING TEMP OF 47° TS $52^{\circ} \mathrm{F}$

DEVELOPMENT MOTORS HAD PUTTY PACKING WHICH RESULTED in BETTER PERFORMANCT

- AT ABOUT SO F BLOW -BY COULD BE EXPERIENCED IN CASE JOINTS
- TEMP FOR RM 25 ON I- 2E-EG LAUNCH WILL

$$
\begin{array}{ll}
\mathrm{BE} \quad 29^{\circ} \mathrm{F} & 9 \mathrm{AM} \\
38^{\circ} \mathrm{F} & 2 \mathrm{pm}
\end{array}
$$

- HAVE NO DATA THAT WOULD INDICATE SRA 25 is DIFFERENT THAN SRMIS OTHER THAN TEMP

RECOMMENDATION 二:

- OARING TEMP MUST BE $\geq 53^{\circ} \mathrm{F}$ AT LAUNCH

DEVELOPMENT MOTORS AT 47° TO $52^{\circ} \mathrm{F}$ WITH PUTTY PACKING HAD NO BLOW-BY SEM 15 (TINE BEST JMMLATION) WORKED AT $53^{\circ} \mathrm{F}$

- PROJECT AMBIENT CONDITIONS (TEMP \& WIND)
TO DETERMINE LAUNCH TIME

History of O-Ring Damage in Field Joints (Cont)

Flight	Date	Temperature ${ }^{\circ} \mathrm{F}$	Erosion incidents	Blow-by incidents	Damage index	Comments
51-C	01.24.85	53°	3	2	11	Most erosion any flight; blow-by; back-up rings heated.
41 -B	02.03.84	57°	1		4	Deep, extensive crosion.
$61-\mathrm{C}$	01.12.86	58°	1		4	O-ring erosion on launch two weeks before Challenger.
41-C	04.06.84	63°	1		2	O-rings showed signs of heating, but no damage.
1	04.12.81	66°			0	Coolest (66°) launch without O -ring problems.
6	04.04.83	67°			0	
51-A	11.08 .84	67°			0	
51-D	04.12.85	67°			0	
5	11.11.82	68°			0	
3	03.22 .82	69°			0	
2	11.12.81	70°	1		4	Extent of crosion not fully known.
9	11.28 .83	70°			0	
41-D	08.30.84	70°	1		4	
51-G	06.17 .85	70°			0	
7	06.18.83	72°			0	
8	08.30.83	73°			0	
51-B	04.29.85	75°			0	
$61-\mathrm{A}$	10.30 .85	75°		2	4	No erosion. Soot found behind two primary O-rings.
51-I	08.27.85	76°			0	
61-B	11.26.85	76°			0	
41-G	10.05 .84	78°			0	
51-J	10.03.85	79°			0	
4	06.27.82	80°			?	O-ring condition unknown; rocket casing lost at sea.
51-F	07.29.85	81°			0	

O-ring damage
index, each launch

So, communication is extremely important.

Visualization can help with that communicate ideas and insights.

ㅍ

TED

Hans Rosling

The best stats you've ever seen

TED2006 - 19:50 - Filmed Feb 2006
Subtitles available in 48 languages
http://www.ted.com/talks/hans_rosling_shows_the_best_stats_you_ve_ever_seen.html

Visualization can also help with Exploratory Data Analysis (EDA)

But why do you need to explore data at all???

"There are three kinds of lies: lies, damned lies, and statistics."

https://en.wikipedia.org/wiki/Lies, damned lies, and statistics

Mystery Data Set

Mystery Data Set

Property

Value

mean (x)
variance (x)
mean(y)
variance (y)
correlation (x, y)
Linear Regression Line

9
11
7.5
4.122
0.816
$y=3+0.5 x$

Anscombe's Quartet

https://en.wikipedia.org/wiki/Anscombe\'s_quartet

Anscombe's Quartet

Data visualization leverages human perception

Name the five senses.

$$
I(x)=\log \left(\frac{1}{P(x)}\right)_{P(x) \not x_{0}}
$$

Sense Bandwidth (bits/sec)

Sight
Touch
Hearing
Smell
Taste

10,000,000

 1,000,000100,000
100,000

A (Simple) Model
 of Human Visual Perception

A (Simple) Model of Human Perception

Stage 1

Stage 2
Parallel detection of basic features into an iconic store

Serial processing of object identification and spatial layout

Stage 1: Pre-Attentive Processing

Rapid

Parallel

Automatic

(Fleeting $=$ lasting for a short time)

Stage 2: Serial Processing

Relatively Slow

(Incorporates Memory)
Manual

Stage 1: Pre-Attentive Processing

The eye moves every 200ms (so this processing occurs every 200ms-250ms)

Example

1281768756138976546984506985604982826762 9809858458224509856458945098450980943585 9091030209905959595772564675050678904567 8845789809821677654876364908560912949686

Example

1281768756138976546984506985604982826762 9809858458224509856458945098450980943585 9091030209905959595772564675050678904567 8845789809821677654876364908560912949686

A few more examples from Prof. Chris Healy at NC State

Left Side

Right Side

Raise your hand if a RED DOT is present...

(On the left or on the right?)

Color (hue) is pre-attentively processed.

Raise your hand if a RED DOT is present...

Shape is pre-attentively processed.

Determine if a RED DOT is present...

Hue and shape together are NOT pre-attentively processed.

Pre-Attentive Processing

- length
- width
- size
- curvature
- number
- terminators
- intersection
- closure
- hue
- lightness
- flicker
- direction of motion
- binocular lustre
- stereoscopic depth
- 3-D depth cues
- lighting direction

Group	Attribute	
Form		$$ Curvature
Color	Hue	
Spatial Position		
Motion	Direction	Stephen Few "Now You See It" pg. 39

Pre-Attentive \rightarrow Cognitive

Gestalt Psychology

Berlin, Early 1900s

Gestalt Psychology

Goal was to understand pattern perception

Gestalt (German) = "seeing the whole picture all at once" instead of a collection of parts

$$
\text { Identified } 8 \text { "Laws of Grouping" }
$$

http://study.com/academy/lesson/gestalt-psychology-definition-principles-quiz.html

Gestalt Psychology

1. Proximity
2. Similarity
3. Closure
4. Symmetry
5. Common Fate
6. Continuity
7. Good Gestalt
8. Past Experience

How many groups are there?

0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0

Proximity

$\bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc$	$\bigcirc \bigcirc$	$\bigcirc \bigcirc$	$\bigcirc \bigcirc$
$\bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc$	$\bigcirc \bigcirc$	\bigcirc	\bigcirc
$\bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc$	$\bigcirc \bigcirc$	\bigcirc	\bigcirc
$\bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc$	$\bigcirc \bigcirc$	$\bigcirc \bigcirc$	\bigcirc
$\bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc$	$\bigcirc \bigcirc$	\bigcirc	\bigcirc
$\bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc$	$\bigcirc \bigcirc$	$\bigcirc \bigcirc$	$\bigcirc \bigcirc$

How many groups are there?

$$
\begin{array}{llllll}
0 & 0 & 0 & 0 & 0 & 0 \\
\bullet & \bullet & \bullet & \bullet & \bullet & \bullet \\
0 & 0 & 0 & 0 & 0 & 0 \\
\bullet & \bullet & \bullet & \bullet & \bullet & \bullet \\
0 & 0 & 0 & 0 & 0 & 0 \\
\bullet & \bullet & \bullet & \bullet & \bullet & \bullet
\end{array}
$$

Similarity

$$
\begin{array}{llllll}
0 & 0 & 0 & 0 & 0 & 0 \\
\bullet & \bullet & \bullet & \bullet & \bullet & \bullet \\
0 & 0 & 0 & 0 & 0 & 0 \\
\bullet & \bullet & \bullet & \bullet & \bullet & \bullet \\
0 & 0 & 0 & 0 & 0 & 0 \\
\bullet & \bullet & \bullet & \bullet & \bullet & \bullet
\end{array}
$$

How many shapes are there?

$$
0 r
$$

Closure

How many items are there?

$$
\text { () \{ \} [] }
$$

Symmetry

$$
\text { () }\} \quad[]
$$

How many sets are there?

$$
\begin{array}{cccc}
& 0 & & 0 \\
0 & 0 & 0 \\
0 & 0 & 0 & \\
0 & 0 & & 0
\end{array}
$$

Common Fate

How many objects are there?

Continuity

How many objects are there?

Good Gestalt

What is this word?

CLIP

Past Experience

Pre-Attentive Processing

Gestalt Laws

Detect Quickly

Detect quickly does NOT mean detect accurately

Ideally you want both.

Crowdsourced Results

More accurate

Less accurate

Mackinlay, 1986

Precision of Quantitative Perception	Attribute	Example	Description
Very precise	Length		Longer $=$ greater
	2-D Position	- 0	Higher or farther to the right $=$ greater
Not very precise	Width		Wider $=$ greater
	Size	-	Bigger $=$ greater
	Intensity	-	Darker $=$ greater
	Blur	- 0	Clearer $=$ greater

Stephen Few "Now You See lt" pg. 41

What does this tell us?

Barcharts, scatterplots, and line charts are really effective for quantitative data

(and for statistical distributions) Tukey Box Plots

Outliers

$$
\begin{gathered}
\text { Largest }<\text { Q3 }+1.5 \text { IQR } \\
\text { Largest }<\text { Q3 }
\end{gathered}
$$

Median

Smallest > Q1

Smallest > Q1-1.5 IQR

Tufte's Chart Principles

Edward Tufte

Tufte's Chart Principles

DO NOT LIE!

Tufte's Chart Principles

DO NOT LIE!
 Maximize Data-Ink Ratio
 Minimize Chart Junk

http://www.perceptualedge.com/blog/?p=7200

PET PEEVE \#208:
GEOGRAPHIC PROFKE MAPS WHICH ARE

Tufte's Chart Principles

Maximize Data-Ink Ratio
Minimize Chart Junk

http://skilfulminds.com/2011/04/05/exploring-the-usefulness-of-chartjunk-at-stl-ux-2011/

Please...

No pie charts.
 No 2.5D charts.

-

\square
\square

0	10	20	30	40

But otherwise...

Barcharts, scatterplots, and line charts are really effective for quantitative data

Anyone else bored by my color choices?

In fact, grayscale can be risky...

In fact, grayscale can be risky...

Color is Powerful

Color

Call attention to information

 Increase appeal
Increase memorability

Another dimension to work with

Have you heard of RGB?

Additive color model: colors create by mixing red, green, blue light

We see in RGB, but we don't interpret in RGB...

HSV Color Model

Saturation

Hue

Post \& Greene, 1986

Actual color names

Actual color names if you're a guy ... if you're a girl ...

Hue and Colorblindness

10% of males and 1% of females are Red-Green Colorblind

Surface ternpersiturs ($\left.{ }^{\circ} \mathrm{CO}\right)$
1.

Sep 30, 2014
NOAA's Latest High Resolution Weather Model is Released

Color and Quantitative Data

Can you order these (low \rightarrow hi)?

Color Brewer for Picking Color Scales

Overview Zoom+Filter Details on Demand

Shneiderman Mantra (Information-Seeking Mantra)

http://visual.ly/every-single-death-game-thrones-series

NameVoyager: Explore baby names and name trends letter by letter
Looking for the perfect baby name? Sign up for free to receive access to our expert tools!
Baby Name > Chal Both \bigcirc Boys \bigcirc Girls

Names starting with 'CHA' per million babies
permillion births

Click a name graph to view that name. Double-click to read more about it.

Where to learn more?

CS 7450
 Information Visualization Every Fall

Visualization @GeorgiaTech vis.gatech.edu

Georgia Visualization
 Tech Lab

\equiv

How to Make Good Charts

- Edward Tufte's One-Day Workshop
- http://www.edwardtufte.com/tufte/courses
- Edward Tufte, Visual Display of Quantitative Information
- http://www.edwardtufte.com/tufte/books vdqi
- Stephen Few, Show Me the Numbers: Designing Tables and Graphs to Enlighten
- http://www.amazon.com/Show-Me-Numbers-DesigningEnlighten/dp/0970601972/ref=la B001H6IQ5M 1 2?s=books\&ie=UTF8\&qid=1385050724\&sr=1-2

Visualization Theory "Books"

- Tamara Munzner VIS Tutorial and Book
- http://www.cs.ubc.ca/~tmm/talks.html
- http://www.cs.ubc.ca/~tmm/vadbook/
- Colin Ware, Information Visualization: Perception for Design
- http://www.amazon.com/Information-Visualization-Perception-InteractiveTechnologies/dp/1558605118
- Stephen Few, Now You See It
- http://www.amazon.com/Now-You-See-VisualizationQuantitative/dp/0970601980/ref=pd bxgy b img z
- Edward Tufte, Envisioning Information
- http://www.edwardtufte.com/tufte/books ei
- Edward Tufte, Visual Explanations
- http://www.edwardtufte.com/tufte/books visex
- Edward Tufte, Beautiful Evidence
- http://www.edwardtufte.com/tufte/books be
- Tamara Munzner, Visualization Analysis \& Design
- http://www.amazon.com/Visualization-Analysis-Design-AKPeters/dp/1466508914

Perception and Color Websites

- Chris Healy, NC State
- $\frac{\mathrm{http}: / / w w w . c s c . n c s u . e d u / f a c u l t y / h e a l e y / P P / i n d e x . h t ~}{\text { m! }}$
- Color Brewer
- http://colorbrewer2.org/
- Maureen C. Stone (Color Links, Blog, Workshops)
- http://www.stonesc.com/color/index.htm
- Subtleties of Color by Robert Simmon of NASA
- http://blog.visual.ly/subtleties-of-color/

Visualization Blogs

- Flowing Data by Nathan Yau
- http://flowingdata.com/
- Information Aesthetics by Andrew Vande Moere
- http://infosthetics.com/
- Information is Beautiful by David McCandless
- http://www.informationisbeautiful.net/
- Visual.ly Blog
- http://blog.visual.|y/
- Indexed Comic by Jessica Hagy
- http://thisisindexed.com/

Infographics

Visual.ly/view
 (wtfviz.net)

