CSE6242: Data & Visual Analytics

Classification Key Concepts

Duen Horng (Polo) Chau

Associate Professor, College of Computing Associate Director, MS Analytics Georgia Tech

Mahdi Roozbahani

Lecturer, Computational Science & Engineering, Georgia Tech Founder of Filio, a visual asset management platform

Partly based on materials by Professors Guy Lebanon, Jeffrey Heer, John Stasko, Christos Faloutsos

How will I rate "Chopin's 5th Symphony"?

Songs	Like?
Some nights	
Skyfall	000
Comfortably numb	0 0
We are young	• •
	•••
•••	
Chopin's 5th	???

Classification

What tools do you need for classification?

- **1. Data** $S = \{(x_i, y_i)\}_{i=1,...,n}$
 - o x_i: data example with d attributes
 - y_i: label of example (what you care about)

- 2. Classification model $f_{(a,b,c,....)}$ with some parameters a, b, c,...
- 3. Loss function L(y, f(x))
 - how to penalize mistakes

Terminology Explanation

data example = data instance attribute = feature = dimension label = target attribute

Bata
$$S = \{(x_i, y_i)\}_{i=1,...,n}$$

o x_i : data example with d attributes $x_i = (x_{i1}, ..., x_{id})$

0	y _i :	label	of	examp	le
---	------------------	-------	----	-------	----

Song name	Artist	Length	 Like?
Some nights	Fun	4:23	 ••
Skyfall	Adele	4:00	 • •
Comf. numb	Pink Fl.	6:13	 0 0
We are young	Fun	3:50	 •••
Chopin's 5th	Chopin	5:32	 ??

What is a "model"?

"a simplified representation of reality created to serve a purpose" Data Science for Business

Example: maps are abstract models of the physical world

There can be many models!!

(Everyone sees the world differently, so each of us has a different model.)

In data science, a model is **formula to estimate what you care about**. The formula may be mathematical, a set of rules, a combination, etc.

Training a classifier = building the "model"

How do you learn appropriate values for parameters *a*, *b*, *c*, ... ?

Analogy: how do you know your map is a "good" map of the

physical world?

Classification loss function

Most common loss: 0-1 loss function

$$L_{0-1}(y, f(x)) = \mathbb{I}(y \neq f(x))$$

More general loss functions are defined by a $m \times m$ cost matrix C such that

$$L(y, f(x)) = C_{ab}$$

where $y = a$ and $f(x) = b$

Class	P0	P1
ТО	0	C ₁₀
T1	C ₀₁	0

T0 (true class 0), T1 (true class 1)

P0 (predicted class 0), P1 (predicted class 1)

An ideal model should correctly estimate:

- known or seen data examples' labels
- unknown or unseen data examples' labels

Song name	Artist	Length	•••	Like?
Some nights	Fun	4:23		••
Skyfall	Adele	4:00		• •
Comf. numb	Pink Fl.	6:13		0 0
We are young	Fun	3:50		•••
Chopin's 5th	Chopin	5:32		??

Training a classifier = building the "model"

- **Q:** How do you learn appropriate values for parameters *a, b, c, ...* ? (Analogy: how do you know your map is a "good" map?)
- $y_i = f_{(a,b,c,....)}(x_i)$, i = 1, ..., n• Low/no error on training data ("seen" or "known")
- y = f_(a,b,c,...)(x), for any new x
 Low/no error on test data ("unseen" or "unknown")

It is very easy to achieve perfect classification on training/seen/known data. Why?

If your model works really well for *training* data, but poorly for *test* data, your model is "overfitting".

How to avoid overfitting?

Example: one run of 5-fold cross validation

You should do a **few runs** and **compute the average** (e.g., error rates if that's your evaluation metrics)

Cross validation

- 1. Divide your data into n parts
- 2. Hold 1 part as "test set" or "hold out set"
- 3. Train classifier on remaining n-1 parts "training set"

1-ST FOLD

2-ND FOLD:

3-RD FOLD:

4-TH FOLD:

- 4. Compute test error on test set
- 5. Repeat above steps n times, once for each n-th part
- 6. Compute the average test error over all n folds (i.e., cross-validation test error)

Cross-validation variations

K-fold cross-validation

- Test sets of size (n / K)
- K = 10 is most common (i.e., 10-fold CV)

Leave-one-out cross-validation (LOO-CV)

• test sets of size 1

Example:

k-Nearest-Neighbor classifier

Figure 6-2. Nearest neighbor classification. The point to be classified, labeled with a question mark, would be classified + because the majority of its nearest (three) neighbors are +.

Image credit: Data Science for Business

But k-NN is so simple!

It can work really well! **Pandora** (acquired by SiriusXM) uses it or has used it: https://goo.gl/foLfMP (from the book "Data Mining for Business Intelligence")

What are good models?

Simple (few parameters)	Effective	
Complex (more parameters)	Effective (if significantly more so than simple methods)	
Complex (many parameters)	Not-so-effective	

The classifier:

f(x) = majority label of the k nearest neighbors (NN) of x

Model parameters:

- Number of neighbors k
- Distance/similarity function d(.,.)

If k and d(.,.) are fixed

Things to learn: ?

How to learn them: ?

If d(.,.) is fixed, but you can change k

Things to learn: ?

How to learn them: ?

$$x_i = (x_{i1}, \dots, x_{id}); y_i = \{1, \dots, m\}$$

If k and d(.,.) are fixed

Things to learn: Nothing

How to learn them: N/A

How to find best k in k-NN? Use cross validation (CV).

15-NN

1-NN

Pretty good!

Overfitted

If k is fixed, but you can change d(.,.)

Possible distance functions:

- Euclidean distance: $||x_i x_j||_2 = \sqrt{(x_i x_j)^\top (x_i x_j)}$
- Manhattan distance: $||x_i x_j||_1 = \sum_{l=1}^d |x_{il} x_{jl}|$
- •

$$x_i = (x_{i1}, ..., x_{id}); y_i = \{1, ..., m\}$$

Summary on k-NN classifier

Advantages

- Little learning (unless you are learning the distance functions)
- Quite powerful in practice (and has theoretical guarantees)

Caveats

Computationally expensive at test time

Reading material:

 The Elements of Statistical Learning (ESL) book, Chapter 13.3

https://web.stanford.edu/~hastie/ElemStatLearn/