Text Analytics (Text Mining)

Duen Horng (Polo) Chau

Associate Professor, College of Computing
Associate Director, MS Analytics
Georgia Tech

Mahdi Roozbahani

Lecturer, Computational Science \& Engineering, Georgia Tech Founder of Filio, a visual asset management platform

[^0]
Text is everywhere

We use documents as primary information artifact in our lives
Our access to documents has grown tremendously thanks to the Internet

- WWW: webpages, Twitter, Facebook, Wikipedia, Blogs, ...
- Digital libraries: Google books, ACM, IEEE, ...
- Lyrics, closed caption... (youtube)
- Police case reports
- Legislation (law)
- Reviews (products, rotten tomatoes)
- Medical reports (EHR - electronic health records)
- Job descriptions

Big (Research) Questions

... in understanding and gathering information from text and document collections

- establish authorship, authenticity; plagiarism detection
- classification of genres for narratives (e.g., books, articles)
- tone classification; sentiment analysis (online reviews, twitter, social media)
- code: syntax analysis (e.g., find common bugs from students' answers)

Popular Natural Language Processing (NLP) libraries

- Stanford NLP
- OpenNLP
tokenization, sentence segmentation, part-ofspeech tagging, named entity extraction, chunking, parsing
- NLTK (python)

Named Entity Recognition:
Image source: https://stanfordnlp.github.io/CoreNLP/

Coreference:

Mention-

(M)1 President Xi Jinping of China, on his first state visit to the United States, showed off his familiarity with American history and pop culture on Tuesday night.

Basic Dependencies:

Outline

- Preprocessing (e.g., stemming, remove stop words)
- Document representation (most common: bag-ofwords model)
- Word importance (e.g., word count, TF-IDF)
- Latent Semantic Indexing (find "concepts" among documents and words), which helps with retrieval

To learn more:
CS 4650/7650 Natural Language Processing

Stemming

Reduce words to their stems (or base forms)
Words: compute, computing, computer, ...

Stem: comput

Several classes of algorithms to do this:

- Stripping suffixes, lookup-based, etc.
http://en.wikipedia.org/wiki/Stemming Stop words: http://en.wikipedia.org/wiki/Stop words

Bag-of-words model

Represent each document as a bag of words, ignoring words' ordering. Why? For simplicity.

Unstructured text becomes a vector of numbers e.g., docs: "I like visualization", "I like data".

1 : "l"
2 : "like"
3 : "data"
4 : "visualization"
"I like visualization" \rightarrow [1, 1, 0, 1]
"I like data" $\rightarrow[1,1,1,0]$

TF-IDF

A word's importance score in a document, among N documents
When to use it? Everywhere you use "word count", you can likely use TF-IDF.

TF: term frequency
= \#appearance a document
(high, if terms appear many times in this document)
IDF: inverse document frequency
$=\log (\mathrm{N} /$ \#document containing that term)
(penalize "common" words appearing in almost any documents)
Final score = TF * IDF
(higher score \rightarrow more "characteristic")

Vector Space Model Why?

Each document \rightarrow vector Each query \rightarrow vector

Search for documents \rightarrow find "similar" vectors Cluster documents \rightarrow cluster "similar" vectors

Latent Semantic Indexing (LSI)

Main idea

- map each document into some 'concepts'
- map each term into some 'concepts’
‘Concept’ : ~ a set of terms, with weights.
For example, DBMS_concept:
"data" (0.8),
"system" (0.5),
"retrieval" (0.6)

Latent Semantic Indexing (LSI) ~ pictorially (before) ~

document-term matrix

	data	system	retireval	lung	ear
doc1	1	1	1		
doc2	1	1	1		
doc3				1	1
doc4				1	1

Latent Semantic Indexing (LSI) ~ pictorially (after) ~

term-concept matrix

	database concept	medical concept
data	1	
system	1	
retrieval	1	
lung		1
ear		1

... and
 document-concept matrix

	database concept	medical concept
doc1	1	
doc2	1	
doc3		1
doc4		1

Latent Semantic Indexing (LSI)

Q: How to search, e.g., for "system"?
A: find the corresponding concept(s); and the corresponding documents

	database concept	
data	1	medical concept
system	1	
retrieval	1	
lung		1
ear		1

Latent Semantic Indexing (LSI)

Works like an automatically constructed thesaurus

We may retrieve documents that DON'T have the term "system", but they contain almost everything else ("data", "retrieval")

LSI - Discussion

Great idea,

- to derive 'concepts' from documents
- to build a 'thesaurus' automatically
- to reduce dimensionality (down to few "concepts")

How does LSI work?
Uses Singular Value Decomposition (SVD)

Singular Value Decomposition (SVD)

Motivation
Problem \#1
Find "concepts" in matrices

Problem \#2
Compression / dimensionality reduction

SVD is a powerful, generalizable technique.

Songs / Movies / Products

SVD Definition (pictorially)

$\mathbf{A}_{[\mathrm{nxm}]}=\mathbf{U}_{[\mathrm{n} \times \mathrm{r}]} \Lambda_{[r \times r]}\left(\mathbf{V}_{[\mathrm{m} \times r]}\right)^{\top}$

n documents m terms
n documents
r concepts

SVD Definition (in words)

$$
\mathbf{A}_{[\mathrm{n} \times \mathrm{m}]}=\mathbf{U}_{[\mathrm{n} \times \mathrm{r}]} \Lambda_{[\mathrm{r} \times \mathrm{r}]}\left(\mathbf{V}_{[\mathrm{m} \times \mathrm{r}]}\right)^{\top}
$$

A: n x m matrix e.g., n documents, m terms

U: n x r matrix
e.g., n documents, r concepts
Λ : r x r diagonal matrix

r : rank of the matrix; strength of each 'concept'
V: m x r matrix
e.g., m terms, r concepts

SVD - Properties

THEOREM [Press+92]: always possible to decompose matrix \mathbf{A} into $\mathbf{A}=\mathbf{U} \Lambda \mathbf{V}^{\top}$
$\mathbf{U}, \Lambda, \mathbf{V}$: unique, most of the time
\mathbf{U}, \mathbf{V} : column orthonormal
i.e., columns are unit vectors, and orthogonal to each other $\mathbf{U}^{\top} \mathbf{U}=\mathbf{I}$
$\mathbf{V}^{\top} \mathbf{V}=\mathbf{I} \quad$ (I: identity matrix)
Λ : diagonal matrix with non-negative diagonal entires, sorted in decreasing order

SVD - Example

SVD - Example

SVD - Interpretation \#1

'documents', 'terms' and 'concepts':
U: document-concept similarity matrix
V : term-concept similarity matrix
Λ : diagonal elements: concept "strengths"

SVD - Interpretation \#1

'documents', 'terms' and 'concepts':
Q: if \mathbf{A} is the document-to-term matrix, what is the similarity matrix $\mathbf{A}^{\top} \mathbf{A}$?
A:

Q: $\mathbf{A ~ A}^{\top}$?
A:

SVD - Interpretation \#1

'documents', 'terms' and 'concepts':
Q: if \mathbf{A} is the document-to-term matrix, what is the similarity matrix $\mathbf{A}^{\top} \mathbf{A}$?
A: term-to-term ([m x m]) similarity matrix
Q: $\mathbf{A ~ A}^{\top}$?
A: document-to-document ([$n \times n]$) similarity matrix

SVD properties

\mathbf{V} are the eigenvectors of the covariance matrix $\mathbf{A}^{\top} \mathbf{A}$ (term-to-term [$\mathrm{m} \times \mathrm{m}$] similarity matrix)

$$
\mathbf{A}^{\top} \mathbf{A}=\left(\mathbf{U} \boldsymbol{\Sigma} \mathbf{V}^{\top}\right)^{\top}\left(\mathbf{U} \boldsymbol{\Sigma} \mathbf{V}^{\top}\right)=\mathbf{V} \boldsymbol{\Sigma}^{2} \mathbf{V}^{\top}
$$

\mathbf{U} are the eigenvectors of the Gram (inner-product) matrix
$\mathbf{A A}^{\top}$ (doc-to-doc [$n \times n$] similarity matrix)

$$
\mathbf{A} \mathbf{A}^{\top}=\left(\mathbf{U} \boldsymbol{\Sigma} \mathbf{V}^{\top}\right)\left(\mathbf{U} \boldsymbol{\Sigma} \mathbf{V}^{\top}\right)^{\top}=\mathbf{U} \boldsymbol{\Sigma}^{2} \mathbf{U}^{\top}
$$

SVD is closely related to PCA, and can be numerically more stable. For more info, see:
http://math.stackexchange.com/questions/3869/what-is-the-intuitive-relationship-between-svd-and-pca Ian T. Jolliffe, Principal Component Analysis (2nd ed), Springer, 2002. Gilbert Strang, Linear Algebra and Its Applications (4th ed), Brooks Cole, 2005.

SVD - Interpretation \#2

Find the best axis to project on.

("best" = minimize sum of squares of projection errors)

inimizes MS error

Beautiful visualization explaining PCA: tttp://setosa.io/ev/principal-component-analysis/

SVD - Interpretation \#2

 $\mathrm{U} \Lambda$ gives the coordinates of the points in the projection axis

SVD - Interpretation \#2

More details
Q: how exactly is dim. reduction done?

SVD - Interpretation \#2

More details
Q: how exactly is dim. reduction done?
A: set the smallest singular values to zero:

SVD - Interpretation \#2

More details
Q: how exactly is dim. reduction done?
A: set the smallest singular values to zero:

SVD - Interpretation \#2

More details
Q: how exactly is dim. reduction done?
A: set the smallest singular values to zero:

SVD - Interpretation \#2

More details
Q: how exactly is dim. reduction done?
A: set the smallest singular values to zero:

1	1	1	0	0
2	2	2	0	0
1	1	1	0	0
5	5	5	0	0
0	0	0	2	2
0	0	0	3	3
0	0	0	1	1

| 1 | 1 | 1 | 0 | 0 |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 2 | 2 | 2 | 0 | 0 |
| 1 | 1 | 1 | 0 | 0 |
| 5 | 5 | 5 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 |

SVD - Interpretation \#3

finds non-zero 'blobs' in a data matrix

$$
\left[\begin{array}{lllll}
1 & 1 & 1 & 0 & 0 \\
2 & 2 & 2 & 0 & 0 \\
1 & 1 & 1 & 0 & 0 \\
5 & 5 & 5 & 0 & 0 \\
0 & 0 & 0 & 2 & 2 \\
0 & 0 & 0 & 3 & 3 \\
0 & 0 & 0 & 1 & 1
\end{array}\right]=\left[\begin{array}{ll}
0.18 & 0 \\
0.36 & 0 \\
0.18 & 0 \\
0.90 & 0 \\
0 & 0.53 \\
0 & 0.80 \\
0 & 0.27
\end{array}\right] \times\left[\begin{array}{lll}
9.64 & 0 \\
0 & 5.29 \\
&
\end{array}\right] \mathrm{x}
$$

SVD - Interpretation \#3

finds non-zero 'blobs' in a data matrix

$$
\left[\begin{array}{lll|ll}
1 & 1 & 1 & 0 & 0 \\
2 & 2 & 2 & 0 & 0 \\
1 & 1 & 1 & 0 & 0 \\
5 & 5 & 5 & 0 & 0 \\
\hline 0 & 0 & 0 & 2 & 2 \\
0 & 0 & 0 & 3 & 3 \\
0 & 0 & 0 & 1 & 1
\end{array}\right]=\left[\begin{array}{ll}
0.18 & 0 \\
0.36 & 0 \\
0.18 & 0 \\
0.90 & 0 \\
0 & 0.53 \\
0 & 0.80 \\
0 & 0.27
\end{array}\right] \times\left[\begin{array}{lll}
9.64 & 0 \\
0 & 5.29
\end{array}\right] \mathrm{x} \begin{aligned}
& \\
& 0.58 \\
& 0
\end{aligned} 0.58
$$

SVD - Interpretation \#3

- finds non-zero 'blobs' in a data matrix =
- 'communities’ (bi-partite cores, here)
$\left[\begin{array}{lll|ll}1 & 1 & 1 & 0 & 0 \\ 2 & 2 & 2 & 0 & 0 \\ 1 & 1 & 1 & 0 & 0 \\ 5 & 5 & 5 & 0 & 0 \\ \hline 0 & 0 & 0 & 2 & 2 \\ 0 & 0 & 0 & 3 & 3 \\ 0 & 0 & 0 & 1 & 1\end{array}\right]$

Row 1

Row 4

Row 5

SVD - Complexity

$\mathrm{O}\left(\mathrm{n}^{*} \mathrm{~m}^{*} \mathrm{~m}\right)$ or $\mathrm{O}\left(\mathrm{n}^{*} \mathrm{n}^{*} \mathrm{~m}\right)$ (whichever is less)
Faster version, if just want singular values or if we want first k singular vectors or if the matrix is sparse [Berry]

No need to write your own!
Available in most linear algebra packages (LINPACK, matlab, Splus/R, mathematica ...)

Case Study How to do queries with LSI?

Case Study
 How to do queries with LSI?

For example, how to find documents with 'data'?

Case Study

How to do queries with LSI?

For example, how to find documents with 'data'? A: map query vectors into 'concept space' - how?

Case Study
 How to do queries with LSI?

For example, how to find documents with 'data'? A: map query vectors into 'concept space', using inner product (cosine similarity) with each 'concept' vector v_{i}

Case Study How to do queries with LSI? Compactly, we have:

Case Study
 How would the document ('information', 'retrieval') be handled?

Case Study

How would the document ('information', 'retrieval') be handled?

$$
\mathrm{d} \mathbf{V}=\mathrm{d}_{\text {concept }}
$$

Case Study Observation

Document ('information', 'retrieval') will be retrieved by query ('data'), even though it does not contain ‘data'!!

Switch Gear to

Text Visualization

Word/Tag Cloud (still popular?)

Word Counts (words as bubbles)

http://www.infocaptor.com/bubble-my-page

Word Tree

word tree

	= substitute spectacle for - politics, or treat name- calling as reasoned debate. We must act, we must act knowing that our work will be imperfect. We must act, knowing that today's victories will be only partial, and that it will be up to those who stand here in four years, and forty years, and four hundred years hence to advance the timeless spirit once conferred to us in a spare Philadelphia hall. My fellow Americans, the oath I have sworn before you today, like the one recited by others who serve in this Capitol, was an oath to God and country, not party or faction - and we must faithfully execute that pledge during the duration of our service. But the words I spoke today are not so different from the oath _ that is taken each time a soldier signs up for duty, or an immigrant realizes her dream. My oath is not so

Phrase Net

Visualize pairs of words satisfying a pattern ("X and Y")

Termite: Topic Model Visualization

http://vis.stanford.edu/papers/termite

Termite: Topic Model Visualization
 http://vis.stanford.edu/papers/termite

[^0]: Partly based on materials by
 Professors Guy Lebanon, Jeffrey Heer, John Stasko, Christos Faloutsos

