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Motivating Example: Data Visualization

53 blood and urine samples

e Matrix format (65x53) (features) from 65 people

H-WBC H-RBC H-Hgb H-Hct H-MCV H-MCH H-MCHC
4 A1 8.0000 4.8200 14.1000 [ 41.0000 85.0000 29.0000 34.0000
A2 7.3000 5.0200 14.7000 | 43.0000 | 86.0000( 29.0000| 34.0000
$ A3 4.3000 4.4800 14.1000 | 41.0000 91.0000 32.0000 35.0000
';:’ Ad 7.5000 4.4700 14.9000 | 45.0000 [ 101.0000 | 33.0000 ( 33.0000
_,rg < A5 7.3000 5.5200 154000 | 46.0000 ( 84.0000 | 28.0000( 33.0000
E‘ Ab 6.9000 4.8600 16.0000 | 47.0000 [ 97.0000 | 33.0000( 34.0000
= A7 7.8000 4.6800 14.7000 | 43.0000 [ 92.0000 | 31.0000( 34.0000
A8 8.6000 4.8200 15.8000 | 42.0000 | 88.0000( 33.0000| 37.0000
\ A9 5.1000 4.7100 14.0000 | 43.0000 | 92.0000 ( 30.0000| 32.0000
N
Y
Features

Difficult to see the correlations of different features



Motivating Example: Data Visualization

Is there a representation better than the coordinate axes?

Is it really necessary to show all the 53 dimensions?

e ... What if there are strong correlations between the
features?

How could we find
the smallest subspace of the 53-D space that
keeps the most information about the original data?

A Solution: Dimension Reduction




Another Example: Dimension Reduction for Text

What are the relations
between data points?

Fafse
!, Pe IV L
| s AR AL
" PN
B 1;:1, ‘j::._
| '..i." ol ¥ .
-05 "'r":.'::- '.::_' :
&% [
. "firil. . '
al e L AT X
" ‘3'1;‘“._.
15-\. i
= o 1 2



Bag-of-Words Representations

document 1 document 2 == Each document is an Instance

Representation of
data instances and
functions evaluated

Machine learning
concerns the

construction and see

on these instances
are part of all
machine learning

systems Each word is a feature

study of systems that
can learn from data.

learn
represent
system
data
Instance

function
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vector in RJ



Term-Document Data Matrix — Bag-of-words

database | SQL | index | regression | likelihood | linear
dl 24 21 9 0 0 3
d2 5 7 10 5 0 3 0
d3 12 16 5 0 0 0
d4 6 7 . 0 0 0
d5 43 31 20 0 3 0
dé 2 0 0 18 P 16
d7 0 0 1 32 12 0
d8 3 0 0 22 4 2
d9 1 0 0 34 27 2D
d10 6 0 0 17 = 23

Many more features



https://en.wikipedia.org/wiki/Document-term_matrix

What is Dimension Reduction?

o The process of reducing the number of random variables under
consideration

¢ One can combine, transform or select variables
¢ One can use linear or nonlinear operations

Original data point Reduced representation

0 l l
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[ k«<d
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vector in R¢



Applications of Dimension Reduction

» The dimension-reduced data can be used for
¢ Visualizing, exploring and understanding the data
o Aggregating weak signals in the data
¢ Cleaning the data
¢ Speeding up subsequent learning task
¢ Building simpler model later

» Key questions of a dimensionality reduction algorithm
¢ What is the criterion for carrying out the reduction process?
¢ What are the algorithm steps?
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Mahdi’'s example

Pixel in 2D

Segmented Voids

Voxel in 3D

Void



Minor axis




Your plan
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PCA: Dimension Reduction by Capturing Variation

» There are many criteria (geometric based, information theory
based, etc.)

¢ One criterion: want to capture variation in data
¢ variations are “signals” or information in the data
¢ need to normalize each variables first

» In the process, also discover variables or dimensions highly
correlated

¢ represent highly related phenomena
¢ combine them to form a stronger signal
¢ lead to simpler presentation

19



Capturing Variation in Data

Data vary little
in this direction

Of i g RS, W .....i....| Twofeatures
o - ¢ ¢ :| arecorrelated

Feature 2

Feature 1

20



Two Equivalent Perspectives of PCA

PCA:

Orthogonal projection of the data onto a lower-dimension linear
space that...

A maximizes variance of projected data (purple line)

dminimizes mean squared distance between
e data point and
e projections (sum of blue lines)

21
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What is variance equation? Var(x) = EE(xi—u)z
i=1
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Formulating the Problem

» Given n data points, {x{, x,, ..., x,} € R® with their mean u =

=1

» Find a direction w € R4 where

Iwll = | ) wf =1

\ j€d

We constrain the norm of w to be
equal to one to avoid having very
large variance in each new
dimension.

24



» Given n data points, {x{,x,, ..., Xx,,} € R% with their mean u

1
—_ 2 __ —
Iwll = | ) wf =1 b=

\ j€d l

INGE

Xi

Il
—

» Such that the variance (or variation) of the data along direction
W is maximized

%_/

variance In new feature space



An Optimization Problem

» Manipulate the objective with linear algebra

1 1%
;;mw—uw)z - ;;«xi—u)w)Z =

1w 1%
= HZ((XL' — H)W)T((Xi — Ww) = Ez w' (g — )" (o — Ww
=1 A B =1
(AB)' = BT AT

n

WY G =) G- = wT Cw

=1

Covariance matrix N



Equivalence to The Eigenvalue Problem

Claim: ujTu}

Form lagrangian function of the optimization problem
Lw,A) =w'Cw + 1(1 — wltw)

If w is a maximum of the original optimization problem, then
there exists a A, where (w, 1) is a stationary point of L(w, 4)

This implies that ﬂX: S X

dL
— =0 =2Cw — 21w @
ow

27



Eigen-Value Problem

» Eigen-value problem d: dimension

o Given a symmetric matrix C € R4*4
C is also a positive semidefinite matrix

e Find avectorw € R% and ||w|| = 1

¢ Such that
Cw = Aw

» There will be multiple solution of wj,w;, ...,wgq for its corresponding
A, Ay, e, Ag

T\ — _
o They are ortho-normal: w; w; =1 w; w; =0

28


https://en.wikipedia.org/wiki/Eigenvalues_and_eigenvectors
https://en.wikipedia.org/wiki/Definiteness_of_a_matrix

Principal Direction of the Data

Feature 2

® Class(
B Class

29



Variance In the Principal Direction

» Principal direction w satisfies "
Cw = Aw = wil N M/‘Nﬂ)
i
\
Variance in principal direction is ~ C =
o P P /\(a\fC:z> Y
/ —~
wlCw Wi W, o Wy T

=wlwl ~

_; .
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Multiple Principal Directions

» Directions wq, w,, ... which has

¢ the largest variances

¢ but are orthogonal to each other

» Take the eigenvectors wy,w,, ... of C corresponding to

¢ the largest eigenvalue A4,

o the second largest eigenvalue 4,

31



Extra Principal Directions

Feature 2

..........................................

B (Class
U L - ——— —— ]
5 b

Feature 1



Relations Between Principal Components

Principal component #1: points in the direction of
the largest variance.

Each subsequent principal component
e is orthogonal to the previous ones, and

e points in the directions of the largest
variance of the residual subspace

33



The PCA Algorithm

» Givenn data points, {x;,x,, ..., x,,} € R% with mean

» Step 1: Estimate the mean and covariance matrix from data
n n

=% and €= (o) G-
.u_n Xi an = 1xl m) X —H

» Step 2: Take the eigenvectors wq, w, , ..of C corresponding to
the largest eigenvalue A4, the second largest eigenvalue 4, ...

» Step 3: Compute reduced representation

_((xi—ﬂ1) (x; — Uz) ) z=>nxk
Zi — W1 W2
g1 02 k «< d

Normalizing by
standard deviation

=1 1=
Principal directions

34
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Singular Value Decomposition

n: instances
Xnxg  d: dimensions
X Is a centered matrix

U,x, = unitary matrix » UxU" =1

X=Uzv" Yaxa — diagonal matrix

Vixg — unitary matrix -V x V!l =1

_ T ——— ) _— Principle direction
Upg oo e e Uy, lel 0 0 [lel led]
X =
Ru® e Vg
U VT

Matrix compression:

36



According to PCA = Cw = Aw = w4

Centering X
| XTX
Covariance Cyxqg = — 1(x — ,u) (x — ,u) =

X =UxyT
C = veTyuTuxzy? B ve2pyr
- XTx i B n T n
= — )
745 74l G
C = =y —VT




Z 22 22
s w=vErr o

n n

N
C@ Aecording to Eigen-decomposition definition = CV = VA

V is the eigen vectors of covariance (Principal directions)

2

O; . . .
A= 7‘ =» The eigenvalues of covariance matrix

Let’s project the data (X) on principal directions:
— XV =UxVTV = U
XV is indepéendent linear combinations of the original data

Projection of one instance (x) on the first principal direction using k dimensions

P1 Uix121x1 » U1x222x2 5 -+ » WixkZkxk]

U=>nxk
P2

Y=k Xk

Upper left corner

Upn121x1 s Uax222x2 1 - s UdxkZkxk]



212 Eigenvectors (principal directions) V

~ |
d

Eigen values A =

Principal components (Scores) or projections on principal directions

In fact, using the SVD to perform PCA makes much better sense
numerically than forming the covariance matrix to begin with, since
the formation of X” X can cause loss of precision.



Are Principal Components Good for Classification?

40



Why PCA potentially works in classification”?

the dimension with the largest variance corresponds
to the dimension with the largest entropy and thus
encodes the most information (Information Theory).
The smallest eigenvectors will often simply represent
noise components, whereas the largest eigenvectors
often correspond to the principal components that
define the data.



https://en.wikipedia.org/wiki/Principle_of_maximum_entropy
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Summary

® PCA
. Finds orthonormal basis for data
. Sorts dimensions in order of “importance”

. Discard low significance dimensions

® Uses
. (Get concise low-dimensional representations

. Remove noise
® Not magic
. Doesn’t know class labels

. Can only capture linear variations

43



Image compression using PCA

WA

PCs # O

PCs # 30
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