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Motivating Example: Data Visualization

3

Difficult to see the correlations of different features

53 blood and urine samples 
(features) from 65 people



Motivating Example: Data Visualization
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A Solution: Dimension Reduction



Another Example: Dimension Reduction for Text
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Bag-of-Words Representations 

6

Each document is an Instance

Each word is a feature



Term-Document Data Matrix – Bag-of-words
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Solution: 
Dimension 
Reduction

… Many more features

https://en.wikipedia.org/wiki/Document-term_matrix


What is Dimension Reduction?
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Applications of Dimension Reduction
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Mahdi’s example
Pixel in 2D

Voxel in 3D

Solid

Void

Segmented Voids



Major axis

Mid axis

Minor axis















PCA: Dimension Reduction by Capturing Variation

19



Capturing Variation in Data
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Two Equivalent Perspectives of PCA
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What is variance equation? 𝑉𝑉𝑉𝑉𝑉𝑉 𝑥𝑥 =
1
𝑛𝑛
�
𝑖𝑖=1

𝑛𝑛

(𝑥𝑥𝑖𝑖−𝜇𝜇)2



Formulating the Problem
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𝑤𝑤 = �
𝑗𝑗∈𝑑𝑑

𝜔𝜔𝑗𝑗2 = 1

We constrain the norm of w to be 
equal to one to avoid having very 

large variance in each new 
dimension. 

𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑛𝑛 ∈ 𝑅𝑅𝑑𝑑
1
𝑛𝑛
�
𝑖𝑖=1

𝑛𝑛

𝑥𝑥𝑖𝑖

𝑅𝑅𝑑𝑑

𝑛𝑛



in new feature space

𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑛𝑛 ∈ 𝑅𝑅𝑑𝑑

𝑤𝑤 = �
𝑗𝑗∈𝑑𝑑

𝜔𝜔𝑗𝑗2 = 1

𝑛𝑛

𝜇𝜇 =
1
𝑛𝑛
�
𝑖𝑖=1

𝑛𝑛

𝑥𝑥𝑖𝑖

max
𝑤𝑤 =1

1
𝑛𝑛
�
𝑖𝑖=1

𝑛𝑛

(𝑥𝑥𝑖𝑖𝑤𝑤 − 𝜇𝜇𝜇𝜇)2



An Optimization Problem
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𝐴𝐴𝐴𝐴 𝑇𝑇 = 𝐵𝐵𝑇𝑇𝐴𝐴𝑇𝑇

= 𝑤𝑤𝑇𝑇𝐶𝐶𝐶𝐶

1
𝑛𝑛
�
𝑖𝑖=1

𝑛𝑛

(𝑥𝑥𝑖𝑖𝑤𝑤 − 𝜇𝜇𝜇𝜇)2 =
1
𝑛𝑛
�
𝑖𝑖=1

𝑛𝑛

((𝑥𝑥𝑖𝑖−𝜇𝜇)𝑤𝑤)2 =

=
1
𝑛𝑛
�
𝑖𝑖=1

𝑛𝑛

𝑥𝑥𝑖𝑖 − 𝜇𝜇 𝑤𝑤 𝑇𝑇( 𝑥𝑥𝑖𝑖 − 𝜇𝜇 𝑤𝑤) =
𝐴𝐴 𝐵𝐵

𝑤𝑤𝑇𝑇(
1
𝑛𝑛
�
𝑖𝑖=1

𝑛𝑛

𝑥𝑥𝑖𝑖 − 𝜇𝜇 𝑇𝑇 𝑥𝑥𝑖𝑖 − 𝜇𝜇 )𝑤𝑤

Covariance matrix

1
𝑛𝑛
�
𝑖𝑖=1

𝑛𝑛

𝑤𝑤𝑇𝑇 𝑥𝑥𝑖𝑖 − 𝜇𝜇 𝑇𝑇 𝑥𝑥𝑖𝑖 − 𝜇𝜇 𝑤𝑤



Equivalence to The Eigenvalue Problem
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max
| 𝑤𝑤 |=1

𝑤𝑤𝑇𝑇𝐶𝐶𝐶𝐶

⇒ 𝐶𝐶𝐶𝐶 = 𝜆𝜆𝜆𝜆

𝑤𝑤𝑡𝑡𝑤𝑤



Eigen-Value Problem
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C is also a positive semidefinite matrix

𝑑𝑑: dimension

𝑅𝑅𝑑𝑑×𝑑𝑑

𝑅𝑅𝑑𝑑

𝑤𝑤1,𝑤𝑤2, … ,𝑤𝑤𝑑𝑑 for its corresponding 
𝜆𝜆1, 𝜆𝜆2, … , 𝜆𝜆𝑑𝑑

𝑤𝑤𝑖𝑖𝑇𝑇𝑤𝑤𝑖𝑖 = 1 𝑤𝑤𝑖𝑖𝑇𝑇𝑤𝑤𝑗𝑗 = 0

https://en.wikipedia.org/wiki/Eigenvalues_and_eigenvectors
https://en.wikipedia.org/wiki/Definiteness_of_a_matrix


Principal Direction of the Data
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Variance in the Principal Direction

30

𝐶𝐶𝐶𝐶 = 𝜆𝜆𝜆𝜆 = 𝑤𝑤𝑤𝑤

𝑤𝑤𝑇𝑇𝐶𝐶𝐶𝐶

𝑤𝑤𝑇𝑇𝑤𝑤𝑤𝑤



Multiple Principal Directions
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𝑤𝑤1,𝑤𝑤2, …

𝑤𝑤1,𝑤𝑤2, …



Extra Principal Directions
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2

1



Relations Between Principal Components
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The PCA Algorithm

34

𝜇𝜇 =
1
𝑛𝑛
�
𝑖𝑖=1

𝑛𝑛

𝑥𝑥𝑖𝑖
1
𝑛𝑛
�
𝑖𝑖=1

𝑛𝑛

𝑥𝑥𝑖𝑖 − 𝜇𝜇 𝑇𝑇 𝑥𝑥𝑖𝑖 − 𝜇𝜇

𝑤𝑤1,𝑤𝑤2

𝑧𝑧𝑖𝑖 =
(𝑥𝑥𝑖𝑖 − 𝜇𝜇1)

𝜎𝜎1
𝑤𝑤1

(𝑥𝑥𝑖𝑖 − 𝜇𝜇2)
𝜎𝜎2

𝑤𝑤2 …
Normalizing by 

standard deviation

𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑛𝑛 ∈ 𝑅𝑅𝑑𝑑

𝑧𝑧 ⇒ n × 𝑘𝑘

𝑘𝑘 ≪ 𝑑𝑑

𝑛𝑛
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Singular Value Decomposition

36

𝑋𝑋𝑛𝑛×𝑑𝑑
n: instances
d: dimensions
X is a centered matrix

𝑋𝑋 = 𝑈𝑈Σ𝑉𝑉𝑇𝑇
𝑈𝑈𝑛𝑛×𝑛𝑛 → 𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 → 𝑈𝑈 × 𝑈𝑈𝑇𝑇 = 𝐼𝐼

Σ𝑛𝑛×𝑑𝑑 → 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚

V𝑑𝑑×𝑑𝑑 → 𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 → 𝑉𝑉 × 𝑉𝑉𝑇𝑇 = 𝐼𝐼
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Matrix compression: K dimensions out of d 



According to PCA 𝐶𝐶𝐶𝐶 = 𝜆𝜆𝜆𝜆 = 𝑤𝑤𝑤𝑤

Covariance 𝐶𝐶𝑑𝑑×𝑑𝑑 = 1
𝑛𝑛
∑𝑖𝑖=1𝑛𝑛 𝑥𝑥𝑖𝑖 − 𝜇𝜇 𝑇𝑇 𝑥𝑥𝑖𝑖 − 𝜇𝜇 =

𝑋𝑋𝑇𝑇𝑋𝑋
𝑛𝑛

𝑋𝑋 = 𝑈𝑈Σ𝑉𝑉𝑇𝑇

𝐶𝐶 =
𝑋𝑋𝑇𝑇𝑋𝑋
𝑛𝑛

𝐶𝐶 =
𝑉𝑉Σ𝑇𝑇𝑈𝑈𝑇𝑇𝑈𝑈Σ𝑉𝑉𝑇𝑇

𝑛𝑛
=
𝑉𝑉Σ2𝑉𝑉𝑇𝑇

𝑛𝑛

Centering X

𝐶𝐶 =
𝑉𝑉Σ2𝑉𝑉𝑇𝑇

𝑛𝑛
= 𝑉𝑉

Σ2

𝑛𝑛
𝑉𝑉𝑇𝑇



𝑉𝑉 is the eigen vectors of covariance (Principal directions)

𝜆𝜆𝑖𝑖 = 𝜎𝜎𝑖𝑖
2

𝑛𝑛
 The eigenvalues of covariance matrix

Let’s project the data (X) on principal directions:
𝑋𝑋𝑋𝑋 = 𝑈𝑈Σ𝑉𝑉𝑇𝑇𝑉𝑉 = 𝑈𝑈Σ

𝑿𝑿𝑿𝑿 is independent linear combinations of the original data

p1 = [𝑢𝑢1×1Σ1×1 , 𝑢𝑢1×2Σ2×2 , … , 𝑢𝑢1×𝑘𝑘Σ𝑘𝑘×𝑘𝑘]

Projection of one instance (𝑥𝑥) on the first principal direction using k dimensions

p2 = [𝑢𝑢2×1Σ1×1 , 𝑢𝑢2×2Σ2×2 , … , 𝑢𝑢2×𝑘𝑘Σ𝑘𝑘×𝑘𝑘]
𝑈𝑈 ⇒ 𝑛𝑛 × 𝑘𝑘
Σ ⇒ 𝑘𝑘 × 𝑘𝑘

Upper left corner

According to Eigen-decomposition definition 𝐶𝐶𝐶𝐶 = VΛ

𝐶𝐶𝐶𝐶 = 𝑉𝑉
Σ2

𝑛𝑛
𝑉𝑉𝑇𝑇𝑉𝑉 = 𝑉𝑉

Σ2

𝑛𝑛



𝑋𝑋 = 𝑈𝑈Σ𝑉𝑉𝑇𝑇

Principal components (Scores) or projections on principal directions

Eigen values 𝜆𝜆 = Σ^2
𝑚𝑚

Eigenvectors (principal directions) V

In fact, using the SVD to perform PCA makes much better sense 
numerically than forming the covariance matrix to begin with, since 

the formation of 𝑋𝑋𝑇𝑇𝑋𝑋 can cause loss of precision.



Are Principal Components Good for Classification?

40



Why PCA potentially works in classification?  

the dimension with the largest variance corresponds
to the dimension with the largest entropy and thus
encodes the most information (Information Theory).
The smallest eigenvectors will often simply represent
noise components, whereas the largest eigenvectors
often correspond to the principal components that
define the data.

https://en.wikipedia.org/wiki/Principle_of_maximum_entropy
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Summary

• PCA
Finds orthonormal basis for data

Sorts dimensions in order of “importance”

Discard low significance dimensions

• Uses
Get concise low-dimensional representations

Remove noise

• Not magic
Doesn’t know class labels

Can only capture linear variations

43



Image compression using PCA
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