poloclub.github.io/#cse6242

CSE6242/CX4242: Data & Visual Analytics

Analytics Building Blocks

Duen Horng (Polo) Chau

Professor, College of Computing Associate Director, MS Analytics Georgia Tech Collection

Cleaning

Integration

Analysis

Visualization

Presentation

Dissemination

Building blocks. Not Rigid "Steps".

Collection

Can skip some

Cleaning

Can go back (two-way street)

Integration

• Data types inform visualization design

Analysis

• Data size informs choice of algorithms

Visualization

• Visualization motivates more data cleaning

Presentation

Visualization challenges algorithm assumptions

Dissemination

e.g., user finds that results don't make sense

How "big data" affects the process?

(Hint: almost everything is harder!)

Collection

The Vs of big data (3Vs originally, then 7, now 42)

Cleaning

Volume: "billions", "petabytes" are common

Integration

Velocity: think X/Twitter, fraud detection, etc.

Analysis

Variety: text (webpages), video (youtube)...

Visualization

Veracity: uncertainty of data

Presentation

Variability

Dissemination

Visualization

Value

http://dataconomy.com/seven-vs-big-data/ https://www.kdnuggets.com/2017/04/42-vs-big-data-data-science.html

Two Example Projects

from Polo Club

Apolo Graph Exploration: Machine Learning + Visualization

Finding More Relevant Nodes

Apolo uses guilt-by-association (Belief Propagation)

Demo: Mapping the Sensemaking Literature

Nodes: 80k papers from Google Scholar (node size: #citation)

Edges: 150k citations

The cost structure of sensemaking

Russell, D.M. and Stefik, M.J. and Pirolli, P. and Card, S.K.

245 citations 8 versions

-

For The cost structure of sensemaking

Russell, D.M. and Stefik, M.J. and Pirolli, P. and Card, S.K.

245 citations 8 versions 1993

Key Ideas (Recap)

Specify exemplars Find other relevant nodes (BP)

What did Apolo go through?

Collection

Scrape Google Scholar. No API.

Cleaning

Integration

Analysis

Visualization

Presentation

Dissemination

Design inference algorithm

(Which nodes to show next?)

Interactive visualization you just saw

Paper, talks, lectures

We developed **Argo Scholar** to replace Apolo

Apolo: Making Sense of Large Network Data by Combining Rich User Interaction and Machine Learning

Duen Horng (Polo) Chau, Aniket Kittur, Jason I. Hong, Christos Faloutsos
School of Computer Science
Carnegie Mellon University
Pittsburgh, PA 15213, USA
{dchau, nkittur, jasonh, christos}@cs.cmu.edu

ABSTRACT

Extracting useful knowledge from large network datasets has become a fundamental challenge in many domains, from scientific literature to social networks and the web. We introduce Apolo, a system that uses a mixed-initiative approach combining visualization, rich user interaction and machine learning—to guide the user to incrementally and interactively explore large network data and make sense of it. Apolo engages the user in bottom-up sensemaking to gradually build up an understanding over time by starting small, rather than starting big and drilling down. Apolo also helps users find relevant information by specifying exemplars, and then using a machine learning method called Belief Propagation to infer which other nodes may be of interest. We evaluated Apolo with twelve participants in a between-subjects study, with the task being to find relevant new papers to update an existing survey paper. Using expert judges, participants using Apolo found significantly more relevant papers. Subjective feedback of Apolo was also very positive.

Author Keywords

Sensemaking, large network, Belief Propagation

ACM Classification Keywords

H.3.3 Information Storage and Retrieval: Relevance feedback; H.5.2 Information Interfaces and Presentation: User

Figure 1. Apolo displaying citation network data around the article *The Cost Structure of Sensemaking*. The user gradually builds up a mental model of the research areas around the article by manually inspecting some neighboring articles in the visualization and specifying them as exemplar articles (with colored dots underneath) for some ad hoc groups, and instructs Apolo to find more articles relevant to them.

representation or schema of an information space that is useful for achieving the user's goal [31]. For example, a scientist interested in connecting her work to a new domain must build up a mental representation of the existing literature in the new domain to understand and contribute to it

NetProbe:

Fraud Detection in Online Auction

NetProbe: The Problem

Find bad sellers (fraudsters) on eBay who don't deliver their items

Non-delivery fraud is a common auction fraud

NetProbe: Key Ideas

- Fraudsters fabricate their reputation by "trading" with their accomplices
- Fake transactions form near bipartite cores
- How to detect them?

NetProbe: Key Ideas

Use Belief Propagation

NetProbe: Main Results

THE WALL STREET JOURNAL.

PITTSBURGH TRIBUNE-REVIEW

"Belgian Police"

Symantec...

What did NetProbe go through?

Collection

Scraping (built a "scraper"/"crawler")

Cleaning

Integration

Analysis

Design detection algorithm

Visualization

Presentation

Paper, talks, lectures

Dissemination

Not released

NetProbe: A Fast and Scalable System for Fraud Detection in Online Auction Networks

Shashank Pandit, Duen Horng Chau, Samuel Wang, Christos Faloutsos *
Carnegie Mellon University
Pittsburgh, PA 15213, USA

{shashank, dchau, samuelwang, christos}@cs.cmu.edu

ABSTRACT

Given a large online network of online auction users and their histories of transactions, how can we spot anomalies and auction fraud? This paper describes the design and implementation of NetProbe, a system that we propose for solving this problem. NetProbe models auction users and transactions as a Markov Random Field tuned to detect the suspicious patterns that fraudsters create, and employs a Belief Propagation mechanism to detect likely fraudsters. Our experiments show that NetProbe is both efficient and effective for fraud detection. We report experiments on synthetic graphs with as many as 7,000 nodes and 30,000 edges, where NetProbe was able to spot fraudulent nodes with over 90% precision and recall, within a matter of seconds. We also report experiments on a real dataset crawled from eBay, with nearly 700,000 transactions between more than 66,000 users, where NetProbe was highly effective at unearthing hidden networks of fraudsters, within a realistic response time of about 6 minutes. For scenarios where the underlying data is dynamic in nature, we propose Incremental *NetProbe*, which is an approximate, but fast, variant of Net-Probe. Our experiments prove that Incremental NetProbe executes nearly doubly fast as compared to NetProbe, while retaining over 99% of its accuracy.

Figure 1: Overview of the NetProbe system

Homework 1

Collection

Cleaning

Integration

Analysis

Visualization

Presentation

Dissemination

- Simple "End-to-end" analysis
- Collect movie data via API
 - Store in SQLite database
- Create co-actor network from data
- Analyze, using SQL queries (e.g., create graph's degree distribution)