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(AKA Information Visualization 101)



What is Infovis?

Why is it Important?

Human Perception

Chart Basics
(If Time, Some Color Theory)

The Shneiderman Mantra

Where to Learn More
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What is Information Visualization?
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Information Visualization

“The use of computer-supported, interactive, 

visual representations of abstract data to 

amplify cognition.”

Card, Mackinlay, and Shneiderman 1999
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Communication

Exploratory Data Analysis (EDA)
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Communication
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(gone wrong)
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Edward Tufte

An American statistician 

and professor emeritus of 

political science, statistics, 

and computer science at 

Yale University. 

He is noted for his writings 

on information design and 

as a pioneer in the field of 

data visualization. 

-Wikipedia



Space Shuttle Challenger
January 28, 1986
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Morning Temperature: 31°F
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Tufte, E. R. (2012). Visual explanations: images and quantities, 

evidence and narrative. Cheshire, CT: Graphics Press.
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Video originally from: http://www.FeynmanPhysicsLectures.com

Most Watched Science Experiment 

Richard Feynman, Physics 

Nobel laureate explained how 

rubber became rigid in cold 

temperate

YouTube video: 

https://youtu.be/6Rwcbsn19c0



How did this happen?
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Tufte, E. R. (2012). Visual explanations: images and quantities, evidence and narrative. Cheshire, CT: Graphics Press.

Engineers at Morton Thiokol, the rocket 

maker, presented on the day before and 

recommended not to launch.
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So, communication is 

extremely important.

Visualization can help with that – 

communicate ideas and insights. 
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https://www.ted.com/talks/hans_rosling_the_best_stats_you_ve_ever_seen



Visualization can also help with 

Exploratory Data Analysis (EDA)

But why do you need to explore 

data at all???
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“There are three kinds of lies:

lies, damned lies, and statistics.”
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Mystery Data Set
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Mystery Data Set

Property Value

mean( x ) 9

variance ( x ) 11

mean( y ) 7.5

variance ( y ) 4.122

correlation ( x,y ) 0.816

Linear Regression Line y = 3 + 0.5x
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Anscombe’s Quartet

40https://en.wikipedia.org/wiki/Anscombe%27s_quartet



Anscombe’s Quartet

Sanity Checking Models

Outlier Detection
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Data visualization leverages

human perception
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Name the five senses.
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Sense Bandwidth (bits/sec)

Sight 10,000,000

Touch 1,000,000

Hearing 100,000

Smell 100,000

Taste 1,000

http://www.britannica.com/EBchecked/topic/287907/information-theory/214958/Physiology



A (Simple) Model

of Human Visual Perception
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A (Simple) Model of Human Perception
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Parallel detection of 

basic features

Serial processing of 

object identification and 

spatial layout

Stage 1 Stage 2



Stage 1: Pre-Attentive Processing

Rapid

Parallel

Automatic
(Fleeting = lasting for a short time)
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Stage 2: Serial Processing

Relatively Slow

(Incorporates Memory)

Manual
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Stage 1: Pre-Attentive Processing

The eye moves every 200ms

(so this processing occurs every 

200ms-250ms)
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Example

1281768756138976546984506985604982826762

9809858458224509856458945098450980943585

9091030209905959595772564675050678904567

8845789809821677654876364908560912949686

51



Example

1281768756138976546984506985604982826762

9809858458224509856458945098450980943585

9091030209905959595772564675050678904567

8845789809821677654876364908560912949686

52



A few more examples from

Prof. Chris Healy at NC State

53



54

Left Side                Right Side



Raise your hand if a RED DOT 

is present…

(On the left or on the right?)
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Color (hue) is pre-attentively 

processed.
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Raise your hand if a RED DOT 

is present…
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Shape is pre-attentively 

processed.
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Determine if a RED DOT is 

present…
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Hue and shape together are 

NOT pre-attentively processed.
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Pre-Attentive Processing

• length

• width

• size

• curvature

• number

• terminators

• intersection

• closure

• hue

• lightness

• flicker

• direction of motion

• binocular lustre

• stereoscopic depth

• 3-D depth cues

• lighting direction
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Stephen Few

“Now You See It”

pg. 39
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Pre-Attentive → Cognitive
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Gestalt Psychology

Berlin, Early 1900s
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Gestalt Psychology

Goal was to understand

pattern perception

Gestalt (German) = “seeing the whole picture all at once” 
instead of a collection of parts

Identified 8 “Laws of Grouping”
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http://study.com/academy/lesson/gestalt-psychology-definition-principles-quiz.html



Gestalt Psychology

1. Proximity

2. Similarity

3. Closure

4. Symmetry

5. Common Fate

6. Continuity

7. Good Gestalt

8. Past Experience
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How many groups are there?
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Proximity
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How many groups are there?
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Similarity
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How many shapes are there?
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Closure
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How many items are there?
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(  )     {  }     [  ]
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(  )     {  }     [  ]

Symmetry
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How many sets are there?
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Common Fate



How many objects are there?
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Continuity
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How many objects are there?
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Good Gestalt
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What is this word?
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FLIGHT
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Past Experience

96

FLIGHT



Pre-Attentive Processing

Gestalt Laws
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Detect Quickly
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Detect quickly does NOT mean

detect accurately

Ideally you want both.
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Crowdsourcing Graphical Perception: Using Mechanical Turk to Assess Visualization Design.Heer 

and Bostock. Proc ACM Conf. Human Factors in Computing Systems (CHI) 2010, p. 203–212.
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Crowdsourcing Graphical Perception: Using Mechanical Turk to Assess Visualization Design.Heer 

and Bostock. Proc ACM Conf. Human Factors in Computing Systems (CHI) 2010, p. 203–212.
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Figure 3: Midmeans of log absolute errors against
true percentages for each proportional judgment type;
superimposed are curves computed with lowess.

the results for the position-angle experiment to those for the
position-length experiment. By designing judgment types 6
and 7 to adhere to the same format as the others, the results
should be more apt for comparison. Indeed, the new results
match expectations: psychophysical theory [7, 34] predicts
areato perform worsethan angle, and both to besignificantly
worse than position. Theory also suggests that angle should
perform worsethan length, but theresultsdo not support this.
Cleveland & McGill also did not find angle to perform worse
than length, but as stated their position-angle results are not
directly comparable to their position-length results.

EXPERIMENT 1B: RECTANGULAR AREA JUDGMENTS

After successfully replicating Cleveland & McGill’s results,
we further extended the experiment to more judgment types.
We sought to compare our circular area judgment (T7) re-
sults with rectangular area judgments arising in visualiza-
tions such as cartograms [9] and treemaps [26]. We hypoth-
esized that, on average, subjects would perform similarly to
thecircular case, but that performance would be impacted by
varying the aspect ratios of the compared shapes. Based on
prior results [19, 34], we were confident that extreme varia-
tions in aspect ratio would hamper area judgments. “Squar-
ified” treemap algorithms [3, 35] address this issue by at-
tempting to minimize deviance from a1:1 aspect ratio, but it
isunclear that this approach isperceptually optimal. Wealso
wanted to assess if other differences, such as the presence of
additional distracting elements, might bias estimation.

Method

We again used Cleveland & McGill’s proportional judgment
task: subjects were asked to identify which of two rectangles
(marked A or B) was the smaller and then estimate the per-
centage the smaller was of the larger by making a “quick
visual judgment.” We used a 2 (display) ⇥ 9 (aspect ra-
tios) factorial design with 6 replications for a total of 108
unique trials (HITs). In the first display condition (T8) we

Cleveland & McGill's Results
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Figure 4: Proportional judgment results (Exp. 1A & B).
Top: Cleveland & McGill’s [7] lab study. Bottom: MTurk
studies. Error bars indicate 95% confidence intervals.
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Figure 5: Rectangular area judgments by aspect ratios
(1B). Error bars indicate 95% confidence intervals.

showed two rectangles with horizontally aligned centers; in
the second display condition (T9) we used 600⇥400 pixel
treemaps depicting 24 values. Aspect ratios weredetermined
by the cross-product of the set { 2

3
, 1, 3

2
} with itself, roughly

matching the mean and spread of aspect ratios produced by
asquarified treemap layout (we generated 1,000 treemaps of
24 uniformly-distributed random values using Bruls et al.’s
layout [3]: theaverageaspect ratio was1.04, thestandard de-
viation was0.28). Wesystematically varied area and propor-
tional difference across replications. Wemodified the squar-
ified treemap layout to ensure that the size and aspect ratio
of marked rectangles matched exactly across display condi-
tions; other rectangle areas were determined randomly.

As a qualification task, we used multiple-choice versions of
two trial stimuli, one for each display condition. For each
trial (HIT), we requested N=24 assignments. We also re-
duced the reward per HIT to $0.02. We chose this number
in an attempt to match the U.S. national minimum wage (as-
suming a response time of 10 seconds per trial).

CHI 2010: Visualization April 10–15, 2010, Atlanta, GA, USA
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Mackinlay, 1986
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Stephen Few

“Now You See It”

pg. 41 107



What does this tell us?
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Barcharts, scatterplots, and line 

charts are really effective

for quantitative data
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40

0 20 40
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(and for statistical distributions)

Tukey Box Plots

110



111



Median

Outliers

Largest < Q3 + 1.5 IQR

Smallest > Q1 - 1.5 IQR

Largest < Q3

Smallest > Q1
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Tufte’s Chart Principles

113

Edward Tufte



Tufte’s Chart Principles

DO NOT LIE!
Maximize Data-Ink Ratio

Minimize Chart Junk
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Tufte’s Chart Principles

DO NOT LIE!
Maximize Data-Ink Ratio

Minimize Chart Junk
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“Cumulative”



http://www.perceptualedge.com/blog/?p=790120



Tufte’s Chart Principles

DO NOT LIE!
Maximize Data-Ink Ratio

Minimize Chart Junk
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http://skilfulminds.com/2011/04/05/exploring-the-usefulness-of-chartjunk-at-stl-ux-2011/
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Chartjunk. (2017, October 05). Retrieved December 01, 2017, from https://en.wikipedia.org/wiki/Chartjunk 



Please…
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No pie charts.

No 2.5D charts.
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PLEASE DON’T

EVER DO THIS!
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Barcharts, scatterplots, and line 

charts are really effective

for quantitative data
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Anyone else bored

by my color choices?
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In fact, grayscale can be risky…
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In fact, grayscale can be risky…
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Color is Powerful
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Call attention to information

Increase appeal

Increase memorability

Another dimension to work with

Color

144
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Have you heard of RGB?

RGB color model. (2017, November 20). Retrieved December 01, 2017, from https://en.wikipedia.org/wiki/RGB_color_model 

Additive color model: colors create by mixing 

red, green, blue light



We see in RGB,

but we don’t interpret in RGB…

146



147

Hue

Lightness

Saturation

Source: color picker in Affinity Designer

HSV Color Model



Hue

Post & Greene, 1986
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Hue and Colorblindness

10% of males and 1% of females

are Red-Green Colorblind
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http://viz.wtf/post/98981561686/ht-matthewbgilmore-noaas-new-weather-modelling 

http://www.ted.com/talks/hans_rosling_shows_the_best_stats_you_ve_ever_seen?language=en


Color and Quantitative Data

Can you order these (low→hi)?
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https://web.natur.cuni.cz/~langhamr/lectures/vtfg1/mapinfo_2/barvy/colors.html 

https://web.natur.cuni.cz/~langhamr/lectures/vtfg1/mapinfo_2/barvy/colors.html
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Color Brewer for Picking Color Scales

COLORBREWER 2.0. (n.d.). Retrieved December 01, 2017, from http://colorbrewer2.org/ 
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Chroma.js Color Palette Helper



Overview

Zoom+Filter

Details on Demand

Shneiderman Mantra

(Information-Seeking Mantra)
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https://www.mat.ucsb.edu/g.legrady/academic/courses/11w259/schneiderman.pdf
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http://visual.ly/every-single-death-game-thrones-series
160



161https://namerology.com/baby-name-grapher/



162http://www.babynamewizard.com/voyager 

Previous version

http://www.babynamewizard.com/voyager


Where to learn more?
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Georgia Tech Visualization Group 
vis.gatech.edu
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https://vis.gatech.edu/courses/



How to Make Good Charts

• Edward Tufte’s One-Day Workshop

– http://www.edwardtufte.com/tufte/courses 

• Edward Tufte, Visual Display of Quantitative Information

– http://www.edwardtufte.com/tufte/books_vdqi 

• Stephen Few, Show Me the Numbers: Designing Tables 

and Graphs to Enlighten

– http://www.amazon.com/Show-Me-Numbers-Designing-

Enlighten/dp/0970601972/ref=la_B001H6IQ5M_1_2?s=books&ie=

UTF8&qid=1385050724&sr=1-2

175

http://www.edwardtufte.com/tufte/courses
http://www.edwardtufte.com/tufte/books_vdqi
http://www.amazon.com/Show-Me-Numbers-Designing-Enlighten/dp/0970601972/ref=la_B001H6IQ5M_1_2?s=books&ie=UTF8&qid=1385050724&sr=1-2
http://www.amazon.com/Show-Me-Numbers-Designing-Enlighten/dp/0970601972/ref=la_B001H6IQ5M_1_2?s=books&ie=UTF8&qid=1385050724&sr=1-2
http://www.amazon.com/Show-Me-Numbers-Designing-Enlighten/dp/0970601972/ref=la_B001H6IQ5M_1_2?s=books&ie=UTF8&qid=1385050724&sr=1-2


Visualization Theory “Books”
• Tamara Munzner VIS Tutorial and Book

– http://www.cs.ubc.ca/~tmm/talks.html 

– http://www.cs.ubc.ca/~tmm/vadbook/ 

• Colin Ware, Information Visualization: Perception for Design
– http://www.amazon.com/Information-Visualization-Perception-Interactive-

Technologies/dp/1558605118 

• Stephen Few, Now You See It
– http://www.amazon.com/Now-You-See-Visualization-

Quantitative/dp/0970601980/ref=pd_bxgy_b_img_z 

• Edward Tufte, Envisioning Information
– http://www.edwardtufte.com/tufte/books_ei 

• Edward Tufte, Visual Explanations
– http://www.edwardtufte.com/tufte/books_visex 

• Edward Tufte, Beautiful Evidence
– http://www.edwardtufte.com/tufte/books_be 

• Tamara Munzner, Visualization Analysis & Design
– http://www.amazon.com/Visualization-Analysis-Design-AK-

Peters/dp/1466508914 
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http://www.cs.ubc.ca/~tmm/talks.html
http://www.cs.ubc.ca/~tmm/vadbook/
http://www.amazon.com/Information-Visualization-Perception-Interactive-Technologies/dp/1558605118
http://www.amazon.com/Information-Visualization-Perception-Interactive-Technologies/dp/1558605118
http://www.amazon.com/Now-You-See-Visualization-Quantitative/dp/0970601980/ref=pd_bxgy_b_img_z
http://www.amazon.com/Now-You-See-Visualization-Quantitative/dp/0970601980/ref=pd_bxgy_b_img_z
http://www.edwardtufte.com/tufte/books_ei
http://www.edwardtufte.com/tufte/books_visex
http://www.edwardtufte.com/tufte/books_be
http://www.amazon.com/Visualization-Analysis-Design-AK-Peters/dp/1466508914
http://www.amazon.com/Visualization-Analysis-Design-AK-Peters/dp/1466508914


Perception and Color Websites

• Chris Healy, NC State

– http://www.csc.ncsu.edu/faculty/healey/PP/index.html 

• Color Brewer

– http://colorbrewer2.org/ 

• Maureen C. Stone (Color Links, Blog, Workshops)

– http://www.stonesc.com/color/index.htm 

• Subtleties of Color by Robert Simmon of NASA

– http://blog.visual.ly/subtleties-of-color/
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http://www.csc.ncsu.edu/faculty/healey/PP/index.html
http://colorbrewer2.org/
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http://blog.visual.ly/subtleties-of-color/


Visualization Blogs

• Flowing Data by Nathan Yau
– http://flowingdata.com/

• Information Aesthetics by Andrew Vande Moere

– http://infosthetics.com/

• Information is Beautiful by David McCandless
– http://www.informationisbeautiful.net/

• Visual.ly Blog

– http://blog.visual.ly/

• Indexed Comic by Jessica Hagy
– http://thisisindexed.com/ 

178

http://flowingdata.com/
http://infosthetics.com/
http://www.informationisbeautiful.net/
http://blog.visual.ly/
http://thisisindexed.com/


Infographics

Visual.ly/view
(wtfviz.net)

179

Visual.ly/view
http://wtfviz.net/


Thanks!

Chad Stolper
chadstolper@gatech.edu
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Questions?

Chad Stolper
chadstolper@gatech.edu
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thisisindexed.com Jessica Hagy

http://www.ted.com/talks/hans_rosling_shows_the_best_stats_you_ve_ever_seen?language=en
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