
JS, JQuery, Ajax

Slides are from MIT – AITI, Marty Stepp, Jessica
Miller, and Victoria Kirst, Ruth Betcher

and Ruth Christie

Based on Internet Standards
 XHTML/HTML and CSS

– To display the data
 JavaScript (XMLHttpRequest calls)

– To exchange data asynchronously with the server
 XML

– To tranfer the data
 DOM (document object model)

– To navigate the hierarchy of X/HTML elements

Variables

 A variable is a name associated with a piece
of data

 Variables allow you to store and manipulate
data in your programs

 Think of a variable as a mailbox which
holds a specific piece of information

Variables

 In JavaScript variables
are created using the
keyword var

 Example:

var x = 10;

var y = 17;

var color = “red”;

var name = “Katie”;

Variables

 It is vitally important to distinguish between
the name of the variable and the value of the
variable

 For example, in the expression var
color=“red”, color is the name of the
variable and red is the value. In other
words, color is the name of the box while
red is what is inside the box

Data Types

 Primitive Data Types
– Numbers
– Strings
– Boolean (True, False)

 Composite Data Types
– Arrays
– Objects

Primitive Data Types

 Numbers - A number can be either an
integer or a decimal

 Strings - A string is a sequence of letters or
numbers enclosed in single or double quotes

 Boolean - True or False

Variables & Data Types

 JavaScript is untyped; It does not have
explicit data types

 For instance, there is no way to specify that
a particular variable represents an integer,
string, or real number

 The same variable can have different data
types in different contexts

Implicit Data Types

 Although JavaScript does not have explicit
data types, it does have implicit data types

 If you have an expression which combines
two numbers, it will evaluate to a number

 If you have an expression which combines a
string and a number, it will evaluate to a
string

Example: Variables

var x = 4;

var y = 11;

var z = “cat”;

var q = “17”;

Ans = x + y;
Ans => 15

Ans = z + x;
Ans => cat4

Ans = x + q;
Ans => 417

More Examples

var x = 4;

var y = 11;

var z = “cat”;

var q = “17”;

Ans = x + y + z;
Ans => 15cat

Ans = q + x + y;
Ans => 17411

Arrays

 An array is a compound data type that
stores numbered pieces of data

 Each numbered datum is called an element
of the array and the number assigned to it is
called an index.

 The elements of an array may be of any
type. A single array can even store elements
of different type.

Creating an Array

 There are several different ways to create an
array in JavaScript

 Using the Array() constructor:
- var a = new Array(1, 2, 3, 4, 5);
- var b = new Array(10);

 Using array literals:
- var c = [1, 2, 3, 4, 5];

Accessing Array Elements

 Array elements are accessed using the []
operator

 Example:
– var colors = [“red”, “green”, “blue”];
– colors[0] => red
– colors[1] => green

Adding Elements

 To add a new element to an array, simply
assign a value to it

 Example:
var a = new Array(10);
a[50] = 17;

Array Length

 All arrays created in JavaScript have a
special length property that specifies how
many elements the array contains

 Example:
– var colors = [“red”, “green”, “blue”];
– colors.length => 3

Primitive Data Types versus
Composite Data Types

 Variables for primitive data types hold the
actual value of the data

 Variables for composite types hold only
references to the values of the composite
type

Variable Names

 JavaScript is case sensitive
 Variable names cannot contain spaces,

punctuation, or start with a digit
 Variable names cannot be reserved words

Programming Tips

 It is bad practice to change the implicit type
of a variable. If a variable is initialized as a
number, it should always be used as an
number.

 Choose meaningful variable names

Statements

 A statement is a
section of
JavaScript that can
be evaluated by a
Web browser

 A script is simply a
collection of
statements

Examples:

Last_name = “Dunn”;
x = 10 ;
y = x*x ;

Programming Tips

 It is a good idea to
end each program
statement with a
semi-colon;
Although this is not
necessary, it will
prevent coding
errors

 Recommended:
a = 3;
b = 4;

 Acceptable:
a = 3; b = 4;

 Wrong:
a =
3;

Operators

+ Addition
- Subtraction
* Multiplication
/ Division
% Modulus
++ Increment
- - Decrement

= = Equality
! = Inequality
! Logical NOT
&& Logical AND
|| Logical OR
? Conditional

Selection

Aggregate Assignments

 Aggregate assignments provide a shortcut
by combining the assignment operator with
some other operation

 The += operator performs addition and
assignment

 The expression x = x + 7 is equivalent to the
expression x += 7

Increment and Decrement

 Both the increment
(++) and decrement
(- -) operator come in
two forms: prefix and
postfix

 These two forms yield
different results

x = 10; x = 10;
y = ++ x; z = x ++;

⇒ y = 11
⇒ z = 10
⇒ x = 11 in both cases

Control Structures

 There are three basic types of control
structures in JavaScript: the if statement,
the while loop, and the for loop

 Each control structure manipulates a block
of JavaScript expressions beginning with {
and ending with }

The If Statement

 The if statement
allows JavaScript
programmers to a
make decision

 Use an if statement
whenever you come to
a “fork” in the
program

If (x = = 10)
{ y = x*x;
}
else
{ x = 0;
}

Repeat Loops

 A repeat loop is a group of statements that is
repeated until a specified condition is met

 Repeat loops are very powerful
programming tools; They allow for more
efficient program design and are ideally
suited for working with arrays

The While Loop

 The while loop is used
to execute a block of
code while a certain
condition is true

count = 0;
while (count <= 10) {

document.write(count);
count++;

}

The For Loop

 The for loop is used when there is a need to
have a counter of some kind

 The counter is initialized before the loop
starts, tested after each iteration to see if it
is below a target value, and finally updated
at the end of the loop

Example: For Loop

// Print the numbers 1
through 10

for (i=1; i<= 10; i++)
document.write(i);

i=1 initializes the counter

i<=10 is the target
value

i++ updates the
counter at the end
of the loop

Example: For Loop
<SCRIPT

LANGUAGE=
"JavaScript">

document.write("1");
document.write("2");
document.write("3");
document.write("4");
document.write("5");
</SCRIPT>

<SCRIPT
LANGUAGE=
"JavaScript">

for (i=1; i<=5; i++)
document.write(i);

Functions

 Functions are a collection of JavaScript
statement that performs a specified task

 Functions are used whenever it is necessary
to repeat an operation

Functions

 Functions have inputs and outputs
 The inputs are passed into the function and

are known as arguments or parameters
 Think of a function as a “black box” which

performs an operation

Defining Functions

 The most common way to define a function
is with the function statement.

 The function statement consists of the
function keyword followed by the name of
the function, a comma-separated list of
parameter names in parentheses, and the
statements which contain the body of the
function enclosed in curly braces

Example: Function

function square(x)
{return x*x;}

z = 3;
sqr_z = square(z);

Name of Function: square

Input/Argument: x

Output: x*x

Example: Function

function sum_of_squares(num1,num2)
{return (num1*num1) + (num2*num2);}

function sum_of_squares(num1,num2)
{return (square(num1) + square(num2));}

jQuery

Slides are from Marty Stepp, Jessica
Miller, and Victoria Kirst

What is jQuery?

 jQuery is a fast and concise JavaScript
Library that simplifies HTML document
traversing, event handling, animating, and
Ajax interactions for rapid web
development. (jQuery.com)

Why learn jQuery?

 Write less, do more:
– $("p.neat").addClass("ohmy").show("slow");

 Performance
 Plugins
 It’s standard
 … and fun!

Presenter
Presentation Notes
That little snippet loops through all <p> elements with the class "neat" and then adds the class "ohmy" to it, whilst slowly showing the paragraph in an animated effect. No browser checks, no loop code, no complex animation functions, just one line of code!

window.onload

 We cannot use the DOM before the page
has been constructed. jQuery gives us a
more compatibile way to do this.
– The DOM way

– The direct jQuery translation

– The jQuery way

window.onload = function() { // do stuff with the DOM }

$(document).ready(function() { // do stuff with the DOM });

$(function() { // do stuff with the DOM });

Selecting groups of DOM objects
name description
getElementById returns array of descendents with the

given tag, such as "div"
getElementsByTagName returns array of descendents with the

given tag, such as "div"
getElementsByName returns array of descendents with the

given name attribute (mostly useful
for accessing form controls)

querySelector * returns the first element that would be
matched by the given CSS selector
string

querySelectorAll * returns an array of all elements that
would be matched by the given CSS
selector string

http://www.w3schools.com/jsref/met_doc_getelementbyid.asp
http://www.w3schools.com/jsref/met_doc_getelementsbytagname.asp
http://www.w3schools.com/jsref/met_doc_getelementsbyname.asp
https://developer.mozilla.org/en/DOM/Element.querySelector
https://developer.mozilla.org/en/DOM/Element.querySelectorAll

jQuery / DOM comparison
DOM method jQuery equivalent
getElementById("id") $("#id")
getElementsByTagName("tag") $("tag")
getElementsByName("somename") $("[name='somename']")
querySelector("selector") $("selector")
querySelectorAll("selector") $("selector")

The jQuery object
 The $ function always (even for ID selectors) returns an

array-like object called a jQuery object.
 The jQuery object wraps the originally selected DOM

objects.
 You can access the actual DOM object by accessing the

elements of the jQuery object.

// false
document.getElementById("id") == $("#myid");
document.querySelectorAll("p") == $("p");
// true
document.getElementById("id") == $("#myid")[0];
document.getElementById("id") == $("#myid").get(0);
document.querySelectorAll("p")[0] == $("p")[0];

Using $ as a wrapper

 $ adds extra functionality to DOM elements
 passing an existing DOM object to $ will

give it the jQuery upgrade
// convert regular DOM objects to a jQuery object
var elem = document.getElementById("myelem");
elem = $(elem);
var elems = document.querySelectorAll(".special");
elems = $(elems);

DOM context identification
 You can use querySelectorAll() and querySelector() on any

DOM object.
 When you do this, it simply searches from that part of the

DOM tree downward.
 Programmatic equivalent of a CSS context selector

var list = document.getElementsByTagName("ul")[0];
var specials = list.querySelectorAll('li.special');

find / context parameter

 jQuery gives two identical ways to do
contextual element identification

var elem = $("#myid");

// These are identical
var specials = $("li.special", elem);
var specials = elem.find("li.special");

http://api.jquery.com/find/

DOM tree traversal example
<p id="foo">

This is a paragraph of text with a
link.

</p>

jQuery traversal methods

 http://api.jquery.com/category/traversing/

http://api.jquery.com/category/traversing/

jQuery tutorials

 Code Academy
http://www.codecademy.com/courses/you-and-
jquery/0?curriculum_id=4fc3018f74258b0003001
f0f#!/exercises/0

 Code School:
http://www.codeschool.com/courses/jquery-air-
first-flight

http://www.codecademy.com/courses/you-and-jquery/0?curriculum_id=4fc3018f74258b0003001f0f
http://www.codeschool.com/courses/jquery-air-first-flight

Ajax/JQuery

$.ajax({
type: 'POST',
url: '/hello',
data: {'student1': 'Mahdi' },
dataType: 'json', // what we expect from server
async: true, // what if the false one
success: function(dataFromServer) {

var result = JSON.parse(dataFromServer);
alert('Just got back from server side!! with '+ result)

},
error: function() {

alert('Something bad happened in our server !!')
}

});

•async:false = Code paused. (Other code waiting for this to finish.)
•async:true = Code continued. (Nothing gets paused. Other code is not waiting.)

	JS, JQuery, Ajax
	Based on Internet Standards
	Variables
	Variables
	Variables
	Data Types
	Primitive Data Types
	Variables & Data Types
	Implicit Data Types
	Example: Variables
	More Examples
	Arrays
	Creating an Array
	Accessing Array Elements
	Adding Elements
	Array Length
	Primitive Data Types versus Composite Data Types
	Variable Names
	Programming Tips
	Statements
	Programming Tips
	Operators
	Aggregate Assignments
	Increment and Decrement
	Control Structures
	The If Statement
	Repeat Loops
	The While Loop
	The For Loop
	Example: For Loop
	Example: For Loop
	Functions
	Functions
	Defining Functions
	Example: Function
	Example: Function
	jQuery
	What is jQuery?
	Why learn jQuery?
	window.onload
	Selecting groups of DOM objects
	jQuery / DOM comparison
	The jQuery object
	Using $ as a wrapper
	DOM context identification
	find / context parameter
	DOM tree traversal example
	jQuery traversal methods
	jQuery tutorials
	Ajax/JQuery
	Slide Number 51

