CSE6242: Data & Visual Analytics

Classification Key Concepts

Duen Horng (Polo) Chau

Associate Professor, College of Computing Associate Director, MS Analytics Georgia Tech

Mahdi Roozbahani

Lecturer, Computational Science & Engineering, Georgia Tech Founder of Filio, a visual asset management platform

Partly based on materials by Professors Guy Lebanon, Jeffrey Heer, John Stasko, Christos Faloutsos

How will I rate "Chopin's 5th Symphony"?

Songs	Like?
Some nights	• •
Skyfall	0 0
Comfortably numb	0 0
We are young	• •
	•••
Chopin's 5th	???

Classification

What tools do you need for classification?

- **1. Data** $S = \{(x_i, y_i)\}_{i=1,...,n}$
 - x_i: data example with d attributes
 - y_i: label of example (what you care about)

- 2. Classification model $f_{(a,b,c,....)}$ with some parameters a, b, c,...
- 3. Loss function L(y, f(x))
 - how to penalize mistakes

Terminology Explanation

data example = data instance attribute = feature = dimension label = target attribute

Bata
$$S = \{(x_i, y_i)\}_{i=1,...,n}$$

x_i: data example with d attributes

 $x_i = (x_{i1}, \dots, x_{id})$

0	y _i :	labe	of	examp	le
---	------------------	------	----	-------	----

Song name	Artist	Length		Like?
Some nights	Fun	4:23		0 0
Skyfall	Adele	4:00		• •
Comf. numb	Pink Fl.	6:13		0 0
We are young	Fun	3:50		•••
Chopin's 5th	Chopin	5:32	•••	??

What is a "model"?

"a simplified representation of reality created to serve a purpose" Data Science for Business

Example: maps are abstract models of the physical world

There can be many models!!

(Everyone sees the world differently, so each of us has a different model.)

In data science, a model is **formula to estimate what you care about**. The formula may be mathematical, a set of rules, a combination, etc.

Training a classifier = building the "model"

How do you learn appropriate values for parameters *a*, *b*, *c*, ... ?

Analogy: how do you know your map is a "good" map of the

physical world?

Classification loss function

Most common loss: 0-1 loss function

$$L_{0-1}(y, f(x)) = \mathbb{I}(y \neq f(x))$$

More general loss functions are defined by a $m \times m$ cost matrix C such that

$$L(y, f(x)) = C_{ab}$$

where $y = a$ and $f(x) = b$

Class	P0	P1
ТО	0	C ₁₀
T1	C ₀₁	0

T0 (true class 0), T1 (true class 1)

P0 (predicted class 0), P1 (predicted class 1)

An ideal model should correctly estimate:

- known or seen data examples' labels
- unknown or unseen data examples' labels

Song name	Artist	Length	•••	Like?
Some nights	Fun	4:23		••
Skyfall	Adele	4:00		• •
Comf. numb	Pink Fl.	6:13		0 0
We are young	Fun	3:50		•••
Chopin's 5th	Chopin	5:32		??

Training a classifier = building the "model"

- **Q:** How do you learn appropriate values for parameters *a, b, c, ...* ? (Analogy: how do you know your map is a "good" map?)
- $y_i = f_{(a,b,c,....)}(x_i)$, i = 1, ..., n• Low/no error on training data ("seen" or "known")
- y = f_(a,b,c,...)(x), for any new x
 Low/no error on test data ("unseen" or "unknown")

It is very easy to achieve perfect classification on training/seen/known data. Why?

If your model works really well for *training* data, but poorly for *test* data, your model is "overfitting".

How to avoid overfitting?

Example: one run of 5-fold cross validation

You should do a **few runs** and **compute the average** (e.g., error rates if that's your evaluation metrics)

Cross validation

- 1. Divide your data into n parts
- 2. Hold 1 part as "test set" or "hold out set"
- 3. Train classifier on remaining n-1 parts "training set"

1-ST FOLD

2-ND FOLD:

3-RD FOLD:

4-TH FOLD:

- 4. Compute test error on test set
- 5. Repeat above steps n times, once for each n-th part
- 6. Compute the average test error over all n folds (i.e., cross-validation test error)

Cross-validation variations

K-fold cross-validation

- Test sets of size (n / K)
- K = 10 is most common (i.e., 10-fold CV)

Leave-one-out cross-validation (LOO-CV)

• test sets of size 1

Example:

k-Nearest-Neighbor classifier

Figure 6-2. Nearest neighbor classification. The point to be classified, labeled with a question mark, would be classified + because the majority of its nearest (three) neighbors are +.

Image credit: Data Science for Business

But k-NN is so simple!

It can work really well! **Pandora** (acquired by SiriusXM) uses it or has used it: https://goo.gl/foLfMP (from the book "Data Mining for Business Intelligence")

What are good models?

Simple (few parameters)

Complex (more parameters)

Effective (if significantly more so than simple methods)

The classifier:

f(x) = majority label of the k nearest neighbors (NN) of x

Model parameters:

- Number of neighbors k
- Distance/similarity function d(.,.)

If k and d(.,.) are fixed

Things to learn: ?

How to learn them: ?

If d(.,.) is fixed, but you can change k

Things to learn: ?

How to learn them: ?

$$x_i = (x_{i1}, ..., x_{id}); y_i = \{1, ..., m\}$$

If k and d(.,.) are fixed

Things to learn: Nothing

How to learn them: N/A

How to find best k in k-NN? Use cross validation (CV).

15-NN

1-NN

Pretty good!

Overfitted

If k is fixed, but you can change d(.,.)

Possible distance functions:

- Euclidean distance: $||x_i x_j||_2 = \sqrt{(x_i x_j)^{\top}(x_i x_j)}$
- Manhattan distance: $||x_i x_j||_1 = \sum_{l=1}^d |x_{il} x_{jl}|$
- •

$$x_i = (x_{i1}, \dots, x_{id}); y_i = \{1, \dots, m\}$$

Summary on k-NN classifier

Advantages

- Little learning (unless you are learning the distance functions)
- Quite powerful in practice (and has theoretical guarantees)

Caveats

Computationally expensive at test time

Reading material:

 The Elements of Statistical Learning (ESL) book, Chapter 13.3

https://web.stanford.edu/~hastie/ElemStatLearn/

Decision trees (DT)

The classifier:

 $f_T(x)$: majority class in the leaf in the tree T containing x

Model parameters: The tree structure and size

Highly recommended!

Visual Introduction to Decision Tree

Building a tree to distinguish homes in New York from homes

in San Francisco

http://www.r2d3.us/visual-intro-to-machine-learning-part-1/

Decision trees

Things to learn: ?

How to learn them: ?

Cross-validation: ?

Learning the Tree Structure

Things to learn: the tree structure

How to learn them: (greedily) minimize the overall classification loss

Cross-validation: finding the best sized tree with *K*-fold cross-validation

Decision trees

Pieces:

- 1. Find the best attribute to split on
- 2. Find the best split on the chosen attribute
- 3. Decide on when to stop splitting
- 4. Cross-validation

Highly recommended lecture slides from CMU

http://www.cs.cmu.edu/afs/cs.cmu.edu/academic/class/15381-s06/www/DTs.pdf

$$x_i = (x_{i1}, \dots, x_{id}); y_i = \{1, \dots, m\}$$

Choosing the split point

Split types for a selected attribute j:

- 1. Categorical attribute (e.g. "genre") $x_{1j} = Rock$, $x_{2j} = Classical$, $x_{3j} = Pop$
- 2. Ordinal attribute (e.g., "achievement") x_{1j}=Platinum, x_{2j}=Gold, x_{3j}=Silver
- 3. Continuous attribute (e.g., song duration) $x_{1j} = 235, x_{2j} = 543, x_{3j} = 378$

$$x_i = (x_{i1}, \dots, x_{id}); y_i = \{1, \dots, m\}$$

Choosing the split point

At a node *T* for a given attribute *d*, select a split *s* as following:

$$min_s loss(T_L) + loss(T_R)$$

where loss(T) is the loss at node T

Common node loss functions:

- Misclassification rate
- Expected loss
- Normalized negative log-likelihood (= cross-entropy)

Choosing the attribute

Choice of attribute:

- Attribute providing the maximum improvement in training loss
- 2. Attribute with highest information gain (mutual information)

Intuition: an attribute with highest information gain helps most rapidly describe an instance (i.e., most rapidly reduces "uncertainty")

Excellent refresher on information gain: using it pick splitting attribute and split point (for that attribute)

http://www.cs.cmu.edu/afs/cs.cmu.edu/academic/class/15381-s06/www/DTs.pdf

PDF page 7 to 21

When to stop splitting? Common strategies:

- 1. Pure and impure leave nodes
 - All points belong to the same class; OR
 - All points from one class completely overlap with points from another class (i.e., same attributes)
 - Output majority class as this leaf's label
- 2. Node contains points fewer than some threshold

4. Further splits provide no improvement in training loss $(loss(T) \le loss(T_I) + loss(T_B))$

Parameters vs Hyper-parameters

Example hyper-parameters (need to experiment/try)

- k-NN: k, similarity function
- Decision tree: #node,
- Can be determined using CV and optimization strategies, e.g., "grid search" (fancy way to say "try all combinations"), random search, etc. (http://scikit-learn.org/stable/modules/grid_search.html)

Example parameters

(can be "learned" / "estimated" / "computed" directly from data)

- Decision tree (entropy-based):
 - which attribute to split
 - split point for an attribute

Summary on decision trees

Advantages

- Easy to implement
- Interpretable
- Very fast test time
- Can work seamlessly with mixed attributes
- Works quite well in practice

Caveats

- "Too basic" but OK if it works!
- Training can be very expensive
- Cross-validation is hard (node-level CV)