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Problem definition

« Given: one or more sequences
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 Find

— similar sequences; forecasts
— patterns; clusters; outliers



Motivation - Applications

Financial, sales, economic series

Medical

— ECGs +; blood pressure etc monitoring
—reactions to new drugs

—elderly care



Motivation - Applications (cont’d)

e ‘Smart house’

— sensors monitor temperature, humidity, air
quality

e video surveillance



Motivation - Applications (cont’d)

* Weather, environment/anti-pollution
— volcano monitoring

— air/water pollutant monitoring

Sunspot Data
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Motivation - Applications (cont’d)

 Computer systems
— ‘Active Disks’ (buffering, prefetching)

—web servers (ditto)

—network traffic monitoring



Stream Data: Disk accesses

Disk traffic
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Problem #1:

Goal: given a signal (e.g.., #packets over time)
Find: patterns, periodicities, and/or compress
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Problem#2: Forecast

Givenx, x, , ..., forecast x, .,
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Problem#2’: Similarity search

E.g.., Find a 3-tick pattern, similar to the last one
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Problem #3:

* Given: A set of correlated time sequences
* Forecast ‘Sent(t)’
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Important observations

Patterns, rules, forecasting and similarity
indexing are closely related:

» To do forecasting, we need
— to find patterns/rules
— to find similar settings 1n the past

* to find outliers, we need to have forecasts
— (outlier = too far away from our forecast)



Outline

e Motivation

" Similarity search and distance functions

— Euclidean
— Time-warping



Importance of distance functions

Subtle, but absolutely necessary:

* A ‘must’ for similarity indexing (->
forecasting)

* A ‘must’ for clustering

Two major families
— Euclidean and Lp norms
— Time warping and variations



Euclidean and Lp
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Observation #1

Time sequence -> n-d vector

V/: Day-n




Observation #2

: : : Day-n
Euclidean distance 1s N

closely related to

.. .
— cosine similarity (ég// R

— dot product Day-1




Time Warping

e allow accelerations - decelerations
— (with or without penalty)

 THEN compute the (Euclidean) distance (+
penalty)

* related to the string-editing distance



‘stutters’:

Time Warping
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Time warping

Q: how to compute 1t?
A: dynamic programming
D(i, j ) = cost to match

prefix of length i of first sequence x with prefix
of length j of second sequence y



Time warping
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Time warping

Thus, with no penalty for stutter, for sequences

Xp Xy ooy X . Vi Vo s Y

D(i, j) =||x[i]- y[ ] + min;

‘D({i-1,j-1) no stutter
D@, j-1) x-stutter

D(@i-1,/) y-stutter



Time warping
VERY SIMILAR to the string-editing distance

(D(i-1,j-1) 1o stutter
D(i, j) = |x[i]- y[ j]|+ mind DG, j -1) x-stutter
D(@i-1,/) y-stutter




Time warping

e Complexity: O(M*N) - quadratic on the
length of the strings

 Many variations (penalty for stutters; limit
on the number/percentage of stutters; ...)

e popular 1n voice processing
[Rabiner + Juang]



Other Distance functions

* piece-wise linear/flat approx.; compare
pieces [Keogh+01] [Faloutsos+97]

* ‘cepstrum’ (for voice [Rabiner+Juang])
— do DFT; take log of amplitude; do DFT again!

* Allow for small gaps [Agrawal+95]

See tutorial by [Gunopulos + Das,
SIGMODO01]



Other Distance functions

* In [Keogh+, KDD’04]: parameter-free, MDL
based



Conclusions

Prevailing distances:
— Euclidean and
— time-warping
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Linear Forecasting
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Problem#2: Forecast

- Example: givex, , x,,, ..., forecast x,
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Forecasting: Preprocessing

MANUALLY:

remove trends spot periodicities
7 days
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Problem#2: Forecast

* Solution: try to express
Xy
as a linear function of the past: x, ;, x, ,, ...,
(up to a window of w)

Formally:
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(Problem: Back-cast; interpolate)

* Solution - interpolate: try to express

Xy

as a linear function of the past AND the future:

Xewpp Xpr2o oo xt+wfuture; Xepp - xt—wpast
(up to windows of w,, ., wg...)

« EXACTLY the same algo’s 22
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Refresher: Linear Regression

atient | weight height -
P s s Body height > .
80 -
27 43 7 R
70
2 43 54 65 - °
54 72 60 - o o
55 °
50 -
[ )
45 - %
40 | ‘ w
N @ ?? 15 25 35 45

Body weight

Express what we don’t know (= “dependent variable”)
as a linear function of what we know (= “independent variable(s)”)



Refresher: Linear Regression
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Linear Auto Regression

Packets
Sent(t)
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Linear Auto Regression
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#packets sent at time t-1

Independent variable = # of packets sent (S[t-1])
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Linear Auto Regression
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Linear Auto Regression

Time
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More detalils:

* QI: Can 1t work with window w > 17
« Al: YES!




More detalils:

* QI: Can 1t work with window w > 17
 Al: YES! (we’ll fit a hyper-plane, then!)
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More detalils:

* QI: Can 1t work with window w > 17
 Al: YES! (we’ll fit a hyper-plane, then!)




More detalils:

* QI: Can 1t work with window w > 17
* Al: YES! The problem becomes:

XN sw] X Ay 11 = YN x1]
e OVER-CONSTRAINED

— a 1s the vector of the regression coefficients

— X has the N values of the w indep. variables
— y has the N values of the dependent variable



o XN swl X A <11 = VN x1]
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More details

« Q2: How to estimate a,, a,, ... a, =a?

* A2: with Least Squares fit
a=(X"'xX)!'x (X"xvy)

* (Moore-Penrose pseudo-inverse)

e a 1s the vector that minimizes the RMSE
fromy



More details

 Straightforward solution:

a=(X"'xX)Ix(X"xy)

Regression Coeff. Vector
X : Sample Matrix

* Observations:
— Sample matrix X grows over time
— needs matrix mnversion
— O(Nxw?) computation
— O(Nxw) storage



Even more details

* Q3: Can we estimate a incrementally?

* A3: Yes, with the brilliant, classic method of

“Recursive Least Squares” (RLS) (see, e.g.,
[ Y1+00], for details).

 We can do the matrix inversion, WITHOUT
inversion! (How 1s that possible?!)



Even more details

* Q3: Can we estimate a incrementally?

* A3: Yes, with the brilliant, classic method of

“Recursive Least Squares” (RLS)
(see, e.g., [ Y1+00], for details).

 We can do the matrix inversion, WITHOUT
inversion! (How 1s that possible?!)

* A: our matrix has special form: (XT X)



SKIP

More details

At the N+1 time tick:

XN+1




SKIP )

More details: key ideas

e Let G, =( X,/ x Xy )! (“gain matrix”)
» G, , can be computed recursively from G,
without matrix inversion
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Comparison:

« Straightforward Least ¢ Recursive LS

Squares — Need much smaller,

— Needs huge matrix fixed size matrix
(growing in size) O(w>w)
O(Nxw) — Fast, incremental

— Costly matrix operation computation
O(N*xw?) O(1 xw?)

— no matrix inversion

N=106, w=1-100




EVEN more details:

Gy, =Gy - [C]_l x|G, X xN+1T]X Xy X Gy

\

1 X w row vector

T
c=[l+x,,,xGyxxy,, ]

Let’s elaborate
(VERY IMPORTANT, VERY VALUABLE!)

SKIP )




SKIP )

EVEN more details:

T _
d = [XN+1 ><)(N+1] 1X[XN+1T ><.yN+1]



SKIP )

EVEN more details:

d = [XN+1T ><)(N+1]_1 X[XN+1T ><yN+1]

[wx 1] [w x (N+1)] [(N+1) x W] [wx (N+1)] [(N+1) x 1]



SKIP )

EVEN more details:

T
[XN+1 ><)(N+1 X[XN+1TXyN+1]

[wx (N+1)] [(N+1) x w]



SKIP )

EVEN more details:

d = [XN+1T ><)(N+1]_1 X[XN+1T ><yN+1]

‘gain _ T -1
GN+1 = [XN+1 ><)(N+1]

matrix’

WXW WXW 1x1 WXW wx 1 Ixw WXW

Gy, =Gy - [C]_l x|G, X xN+1T]X Xy X Gy

T
SCALAR! ( = [1 + Xy, X GN XX+t ]



SKIP )

Altogether:

G,=01

where
I: w x w 1dentity matrix
0: a large positive number



Comparison:

« Straightforward Least ¢ Recursive LS

Squares — Need much smaller,

— Needs huge matrix fixed size matrix
(growing in size) O(w>w)
O(Nxw) — Fast, incremental

— Costly matrix operation computation
O(N*xw?) O(1 xw?)

— no matrix inversion

N=106, w=1-100




Pictorially:

Given:

Dependent Variable

Independent Variable



Dependent Variable

Pictorially:

* — new point

Independent Variable



Pictorially:
RLS: quickly compute new best fit

* — new point

Dependent Variable

Independent Variable



Even more details

* Q4: can we ‘forget’ the older samples?
* A4: Yes - RLS can easily handle that [ Y1+00]:



Adaptability - ‘forgetting’
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Adaptability - ‘forgetting’

Dependent Variable
eg., #bytes sent

Trend change
0
° 0 o 0
v e Nt RLS
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Independent Variable

eg. #packets sent



Adaptability - ‘forgetting’

Trend change

(R)LS
with no forgetting

Dependent Variable

(R)LS
with forgetting

Independent Variable

* RLS: can *trivially* handle ‘forgetting’



