Data

Spark & Spark SQL

Max Mahdi Roozbahani

https://poloclub.github.io/#cse6242
https://www.cc.gatech.edu/~dchau/

K 2

What is Spo

http://spark.apache.org

Not a2 modified version of Hadoop

Separate, fast, MapReduce-like engine

» In=memory data storage for very fast iterative queries
» General execution graphs and powerful optimizations
» Up to 40x faster than Hadoop

Compatible with Hadoop’s storage APls
» Can read/write to any Hadoop-supported system,
including HDFS, HBase, Sequencefiles, etc.

http://spark.apache.org

What is Spark SQL?

(Formally called Shark)

Port of Apache Hive to run on Spark

Compatible with existing Hive data, metastores,
and queries (HiveQL, UDFs, etc)

Similar speedups of up to 40x

Project History

Spark project started in 2009 at UC Berkeley AMP lab,
open sourced 2010 Iab

Became Apache Top-Level Project in Feb 2014
Shark/Spark SQL started summer 201 |

Built by 250+ developers and people from 50 companies
Scale to 1000+ nodes in production

In use at Berkeley, Princeton, Klout, Foursquare, Conviva, Quantifind,
Yahoo! Research, ...

http://en.wikipedia.org/wiki/Apache_Spark

Why a New Programming Model?

VapReduce greatly simplified big data analysis

But as soon as It got popular, users wanted more:

» More complex, multi-stage applications (e.g.
terative graph algorithms and machine learning)
» More interactive ad-hoc queries

Require faster data sharing across parallel jobs

Is MapReduce dead? Not really.

Google Dumps MapReduce in http://www.datacenterknowledge.com/archives/

2014/06/25/google-dumps-mapreduce-favor-new-

Favor of New Hyper-Scale hyper-scale-analytics-system/
Analytics System

http://www.reddit.com/r/compsci/comments/296aqr/on the death of mapreduce at gooagle/

o
'.'.) reddlt COMPSCI | comments | related other discussions (3)

On the Death of Map-Reduce at Google. (te-paper-traii.org)
submitted 3 months ago by gkdhfjdjdhd
20 comments share

all 20 comments

sorted by: best v

[-] tazzy531 47 points 3 months ago
As an employee, I was surprised by this headline, considering I just ran some mapreduces this past week.

After digging further, this headline and article is rather inaccurate. ¢
Cloud DataFlow is the external name for what is internally called Flume.

s D R T PR T T . % T N DR T PR TR SR T T T A T T

http://www.reddit.com/r/compsci/comments/296aqr/on_the_death_of_mapreduce_at_google/
http://www.reddit.com/r/compsci/comments/296aqr/on_the_death_of_mapreduce_at_google/
http://www.datacenterknowledge.com/archives/2014/06/25/google-dumps-mapreduce-favor-new-hyper-scale-analytics-system/
http://www.datacenterknowledge.com/archives/2014/06/25/google-dumps-mapreduce-favor-new-hyper-scale-analytics-system/
http://www.datacenterknowledge.com/archives/2014/06/25/google-dumps-mapreduce-favor-new-hyper-scale-analytics-system/
http://www.datacenterknowledge.com/archives/2014/06/25/google-dumps-mapreduce-favor-new-hyper-scale-analytics-system/

Is Hadoop still Relephant?

https://www.linkedin.com/pulse/ | 8-years-later-hadoop-still-relephant-ramon-chen

While newer technologies offer alternative approaches to big data
management, Hadoop's distributed nature, scalability, and integration
capabilities ensure its relevance in diverse use cases.

... Hadoop will remain a valuable component together with new
technologies that continue to emerge, enabling businesses to process,
store, and analyze vast amounts of data efficiently.

Elephants
(Elepante)

Image source: https://sites.google.com/site/
evolutionoftheelephant/ances

Idea for using this image comes from the
LinkedIn post.

https://sites.google.com/site/evolutionoftheelephant/ances
https://sites.google.com/site/evolutionoftheelephant/ances
https://sites.google.com/site/evolutionoftheelephant/ances

Data Sharing in MapReduce

HDFS HDFS HDFS HDFS
read write ‘ read write

Input

result |

result 2

result 3

[Slow due to replication, serialization, and disk 1O 8]

Da
ta
S
haring |
ns
park

- X
\\\\\\\\\\\\\\\\\\““*
\\\\\\\\\\\\\\\\\‘\“‘\

‘?.,
5 \\\\\\\\\ SN

\\\\\\\\\\\\\\\\\\\\\\\\\\\\\‘\ e

S

G

S

|
nput

on
Proe_time
Cessiﬂg

e SRS
S W
B
\\\\\\\\\\\\\\‘\\\\\\\

In
put
Dis
trlb
ut
memori

10
- Ioo
X
fast
er
T
k an
d di
Is|<

Spark Programming Model

Key idea: resilient distributed datasets (RDDs)
» Distributed collections of objects that can be cached In
memory across cluster nodes
» Manipulated through various parallel operators
» Automatically rebuilt on fallure

Interface
» Clean language-integrated APl in Scala
» Can be used interactively from Scala, Python console
» Supported languages: Java, Scala, Python, R

http://www.scala-lang.org/old/fag/4

Functional programming in D3: htip://sleptons.blogspot.com/2015/01/functional-pro -d3js-good-example.html

Scala vs Java 8: http://kukuruku.co/hub/scala/java-8-vs-scala-the-difference-in-approaches-and-mutual-innovations

’scala DOCUMENTATION DOWNLOAD COMMUNITY CONTRIBUTE @ M

Object-Oriented Meets Functional

Have the best of both worlds. Construct elegant class
hierarchies for maximum code reuse and extensibility,
implement their behavior using higher-order functions.
Or anything in-between.

LEARN MORE

DOWNLOAD API DOCS

http://www.scala-lang.org/old/faq/4
http://www.scala-lang.org/old/faq/4
http://sleptons.blogspot.com/2015/01/functional-programming-d3js-good-example.html
http://kukuruku.co/hub/scala/java-8-vs-scala-the-difference-in-approaches-and-mutual-innovations

Example: Log Mining

Load error messages from a log into memory, then
interactively search for various patterns

lines = spark.textFile(“hdfs://...”)

errors = lines.filter(_.startsWith("ERROR”))
messages = errors.map(_.split(\t’)(2))
cachedMsgs = messages.cache()

cachedMsgs.filter(_.contains(“foo”)).count
cachedMsgs.filter(_.contains(“bar”)).count

Result: scaled to | TB data in 5-7/ sec
(vs 170 sec for on-disk data)

http://ananthakumaran.in/2010/03/29/scala-underscore-magic.html
http://www.slideshare.net/normation/scala-dreaded

http://www.slideshare.net/normation/scala-dreaded
http://ananthakumaran.in/2010/03/29/scala-underscore-magic.html

Fault Tolerance

RDDs track the series of transformations used to
ouild them (their lineage) to recompute lost data

. g:
messages = textFile(...).filter(_.contains(“error”))
.map(_.split(\t’)(2))

HadoopRDD FilteredRDD MappedRDD
path = hdfs//... func = _.contains(...) func = _split(...)

Example: Logistic Regression

val data = spark.textFile(...).map(readPoint).cache()
var w = Vector.random(D)

for (i <- 1 to ITERATIONS) {
val gradient = data.map(p =>
(1/(1 +exp(-p.y*(wdot p.x))) -1) *p.y * p.x
).reduce(_ + _)
w -= gradient

}

printin("Final w: " + w)

Logistic Regression Performance

4000
3000
2000

1000

|27 s/ iteration

/

L. Hadoop
wa Spark

f\

first iteration 1 /4 s
further rterations 6 s

5 10 20

Number of Iterations 5

Supported Operators

map
filter
groupBy

sort

join
leftOuterJoin

rightOuterdoin

reduce
count
reduceByKey
groupByKey
first

union

CroSs

sample
cogroup
take
partitionBy
pipe

save

Spark SQL: Hive on Spark

Motivation

Hive I1s great, but Hadoop's execution engine makes
even the smallest queries take minutes

Scala 1s good for programmers, but many data users
only know SQL

Can we extend Hive to run on Spark?

Hive Architecture

Client CL|

Driver

-

Meta store Query Physical Plan

Optimizer Execution

Spark SQL Architecture

Driver | Cache Mgr.

Meta store Query Physical Plan

Optimizer Execution

[Engle et al, SIGMOD 201 2]

Using Spark SQL
CREATE TABLE mydata_cached AS SELECT ...

Run standard HiveQL on it, including UDFs

» A few esoteric features are not yet supported

Can also call from Scala to mix with Spark

Benchmark Query I

SELECT * FROM grep WHERE field LIKE “%XYZ%’;

Shark (cached)

Shark

Hive

0 50 100 150 200 250

Execution Time (secs) 22

Benchmark Query 2

SELECT sourcelP, AVG(pageRank), SUM(adRevenue) AS earnings
FROM rankings AS R, userVisits AS V ON R.pageURL = V.destURL
WHERE V.visitDate BETWEEN ‘1999-01-01’ AND ‘2000-01-01’
GROUP BY V.sourcelP

ORDER BY earnings DESC

LIMIT 1;

Shark (cached)

0 100 200 300 400 500

Execution Time (secs)

23

Behavior with Not Enough RAM

100

~J
U

Iteration time (s)
N U
U O

0

68.8

Cache disabled

SET.I

25% 50% 75%

% of working set in memory

Fully cached

24

What’s Next?

Recall that Spark's model was motivated by two
emerging uses (Interactive and multi-stage apps)

Another emerging use case that needs fast data

sharing is stream processing
» Track and update state in memory as events arrive
» Large-scale reporting, click analysis, spam filtering, etc

Streaming Spark

Extends Spark to perform streaming computations

Runs as a series of small (~1 s) batch jobs, keeping
state In memory as fault-tolerant RDDs

Intermix seamlessly with batch and ad-hoc queries
map reduceByWindow

tweetStream T=| :L
flatMap(_.toLower.split) L
.map(word => (word, 1)) L

.reduceByWindow(“5s”, _ + _) =1
1=2
Dm

[Zaharia et al, HotCloud 2012]

26

map() vs flatMap()

The best explanation:

https://www.linkedin.com/pulse/difference-between-map-

flatmap-transtormations-spark-pyspark-pandey

flatMap = map + flatten

27

https://www.linkedin.com/pulse/difference-between-map-flatmap-transformations-spark-pyspark-pandey
https://www.linkedin.com/pulse/difference-between-map-flatmap-transformations-spark-pyspark-pandey

Streaming Spark

Extends Spark to perform streaming computations

Runs as a series of small (~1 s) batch jobs, keeping
state In memory as fault-tolerant RDDs

Intermix seamlessly with batch and ad-hoc queries

Result: can process 42 million records/second
(4 GB/s) on 100 nodes at sub=second latency

_

J

GraphX

Parallel graph processing

Extends RDD -> Resilient Distributed Property Graph

» Directed multigraph with properties attached to each vertex

and edge

Limited algorithms

» PageRank

» Connected Components

» Triangle Counts

Graph A

MLIib

e Basic statistics

o

o

o

o

o

o

summary statistics
correlations

stratified sampling
hypothesis testing

streaming significance testing
random data generation

¢ Classification and regression

o]

o]

o]

o]

o]

linear models (SVMs, logistic regression, linear regression)

naive Bayes
decision trees

ensembles of trees (Random Forests and Gradient-Boosted Trees)

isotonic regression

e Collaborative filtering

o

https://spark.apache.org/docs/latest/mllib-guide.html

alternating least squares (ALS)

Clustering
o k-means
o Gaussian mixture
o power iteration clustering (PIC)
o |atent Dirichlet allocation (LDA)
o bisecting k-means
o streaming k-means
Dimensionality reduction
o singular value decomposition (SVD)
o principal component analysis (PCA)
Feature extraction and transformation
Frequent pattern mining
o FP-growth
o association rules
o PrefixSpan
Evaluation metrics
PMML model export
Optimization (developer)
o stochastic gradient descent
o limited-memory BFGS (L-BFGS)

