
poloclub.github.io/#cse6242  
CSE6242/CX4242: Data & Visual Analytics  

Spark & Spark SQL�

Max Mahdi Roozbahani

Slides adopted from Matei Zaharia (Stanford) and Oliver Vagner (NCR)

https://poloclub.github.io/#cse6242
https://www.cc.gatech.edu/~dchau/

What is Spark ?
Not a modified version of Hadoop

Separate, fast, MapReduce-like engine
» In-memory data storage for very fast iterative queries
»General execution graphs and powerful optimizations
»Up to 40x faster than Hadoop

Compatible with Hadoop’s storage APIs
»Can read/write to any Hadoop-supported system,

including HDFS, HBase, SequenceFiles, etc.

http://spark.apache.org

2

http://spark.apache.org

What is Spark SQL?  
(Formally called Shark)

Port of Apache Hive to run on Spark

Compatible with existing Hive data, metastores,
and queries (HiveQL, UDFs, etc)

Similar speedups of up to 40x

3

Project History
Spark project started in 2009 at UC Berkeley AMP lab,  
open sourced 2010

Became Apache Top-Level Project in Feb 2014

Shark/Spark SQL started summer 2011

Built by 250+ developers and people from 50 companies

Scale to 1000+ nodes in production

In use at Berkeley, Princeton, Klout, Foursquare, Conviva, Quantifind,
Yahoo! Research, …

UC BERKELEY

http://en.wikipedia.org/wiki/Apache_Spark 4

Why a New Programming Model?

MapReduce greatly simplified big data analysis

But as soon as it got popular, users wanted more:
»More complex, multi-stage applications (e.g. 

iterative graph algorithms and machine learning)
»More interactive ad-hoc queries

Require faster data sharing across parallel jobs

5

Is MapReduce dead? Not really.

http://www.reddit.com/r/compsci/comments/296aqr/on_the_death_of_mapreduce_at_google/

http://www.datacenterknowledge.com/archives/
2014/06/25/google-dumps-mapreduce-favor-new-
hyper-scale-analytics-system/

6

http://www.reddit.com/r/compsci/comments/296aqr/on_the_death_of_mapreduce_at_google/
http://www.reddit.com/r/compsci/comments/296aqr/on_the_death_of_mapreduce_at_google/
http://www.datacenterknowledge.com/archives/2014/06/25/google-dumps-mapreduce-favor-new-hyper-scale-analytics-system/
http://www.datacenterknowledge.com/archives/2014/06/25/google-dumps-mapreduce-favor-new-hyper-scale-analytics-system/
http://www.datacenterknowledge.com/archives/2014/06/25/google-dumps-mapreduce-favor-new-hyper-scale-analytics-system/
http://www.datacenterknowledge.com/archives/2014/06/25/google-dumps-mapreduce-favor-new-hyper-scale-analytics-system/

7

https://www.linkedin.com/pulse/18-years-later-hadoop-still-relephant-ramon-chen

While newer technologies offer alternative approaches to big data
management, Hadoop's distributed nature, scalability, and integration
capabilities ensure its relevance in diverse use cases.  
 
… Hadoop will remain a valuable component together with new
technologies that continue to emerge, enabling businesses to process,
store, and analyze vast amounts of data efficiently.

Is Hadoop still Relephant?

Image source: https://sites.google.com/site/
evolutionoftheelephant/ances 
Idea for using this image comes from the
LinkedIn post.

https://sites.google.com/site/evolutionoftheelephant/ances
https://sites.google.com/site/evolutionoftheelephant/ances
https://sites.google.com/site/evolutionoftheelephant/ances

Data Sharing in MapReduce

iter. 1 iter. 2 . . .

Input

HDFS 
read

HDFS 
write

HDFS 
read

HDFS 
write

Input

query 1

query 2

query 3

result 1

result 2

result 3

. . .

HDFS 
read

Slow due to replication, serialization, and disk IO
8

iter. 1 iter. 2 . . .

Input

Data Sharing in Spark

Distributed 
memory

Input

query 1

query 2

query 3

. . .

one-time 
processing

10-100× faster than network and disk 9

Spark Programming Model
Key idea: resilient distributed datasets (RDDs)
»Distributed collections of objects that can be cached in

memory across cluster nodes
»Manipulated through various parallel operators
»Automatically rebuilt on failure

Interface
»Clean language-integrated API in Scala
»Can be used interactively from Scala, Python console
» Supported languages: Java, Scala, Python, R

10

http://www.scala-lang.org/old/faq/4  

Functional programming in D3: http://sleptons.blogspot.com/2015/01/functional-programming-d3js-good-example.html

Scala vs Java 8: http://kukuruku.co/hub/scala/java-8-vs-scala-the-difference-in-approaches-and-mutual-innovations

11

http://www.scala-lang.org/old/faq/4
http://www.scala-lang.org/old/faq/4
http://sleptons.blogspot.com/2015/01/functional-programming-d3js-good-example.html
http://kukuruku.co/hub/scala/java-8-vs-scala-the-difference-in-approaches-and-mutual-innovations

Example: Log Mining
Load error messages from a log into memory, then
interactively search for various patterns

lines = spark.textFile(“hdfs://...”)

errors = lines.filter(_.startsWith(“ERROR”))

messages = errors.map(_.split(‘\t’)(2))

cachedMsgs = messages.cache()

Worker

Worker

Worker

Driver

cachedMsgs.filter(_.contains(“foo”)).count
cachedMsgs.filter(_.contains(“bar”)).count
. . .

tasks

results

Cache 1

Cache 2

Cache 3

Base RDD Transformed RDD

Action

Result: full-text search of Wikipedia in <1
sec (vs 20 sec for on-disk data)

Result: scaled to 1 TB data in 5-7 sec 
(vs 170 sec for on-disk data)

12
http://www.slideshare.net/normation/scala-dreaded
http://ananthakumaran.in/2010/03/29/scala-underscore-magic.html

http://www.slideshare.net/normation/scala-dreaded
http://ananthakumaran.in/2010/03/29/scala-underscore-magic.html

Fault Tolerance
RDDs track the series of transformations used to
build them (their lineage) to recompute lost data

E.g:
messages = textFile(...).filter(_.contains(“error”))

 .map(_.split(‘\t’)(2))

HadoopRDD
path = hdfs://…

FilteredRDD
func = _.contains(...)

MappedRDD
func = _.split(…)

13

Example: Logistic Regression
val data = spark.textFile(...).map(readPoint).cache()

var w = Vector.random(D)

for (i <- 1 to ITERATIONS) {
 val gradient = data.map(p =>
 (1 / (1 + exp(-p.y*(w dot p.x))) - 1) * p.y * p.x
).reduce(_ + _)
 w -= gradient
}

println("Final w: " + w)

Initial parameter vector

Repeated MapReduce steps 
to do gradient descent

Load data in memory once

14

Logistic Regression Performance

R
un

ni
ng

 T
im

e
(s

)

0

1000

2000

3000

4000

Number of Iterations

1 5 10 20 30

Hadoop
Spark

127 s / iteration

first iteration 174 s

further iterations 6 s

15

Supported Operators
map

filter

groupBy

sort

join

leftOuterJoin

rightOuterJoin

reduce

count

reduceByKey

groupByKey

first

union

cross

sample

cogroup

take

partitionBy

pipe

save

...

16

Spark SQL: Hive on Spark

17

Motivation
Hive is great, but Hadoop’s execution engine makes
even the smallest queries take minutes

Scala is good for programmers, but many data users
only know SQL

Can we extend Hive to run on Spark?

18

Hive Architecture

Meta store

HDFS

 Client

Driver

SQL
Parser

Query
Optimizer

Physical Plan

Execution

CLI JDBC

MapReduce

19

Spark SQL Architecture

Meta store

HDFS

 Client

Driver

SQL
Parser

Physical Plan

Execution

CLI JDBC

Spark

Cache Mgr.

Query
Optimizer

[Engle et al, SIGMOD 2012]20

Using Spark SQL
CREATE TABLE mydata_cached AS SELECT …

Run standard HiveQL on it, including UDFs
»A few esoteric features are not yet supported

Can also call from Scala to mix with Spark

21

Benchmark Query 1
SELECT * FROM grep WHERE field LIKE ‘%XYZ%’;

22

Benchmark Query 2
SELECT sourceIP, AVG(pageRank), SUM(adRevenue) AS earnings 
FROM rankings AS R, userVisits AS V ON R.pageURL = V.destURL  
WHERE V.visitDate BETWEEN ‘1999-01-01’ AND ‘2000-01-01’  
GROUP BY V.sourceIP 
ORDER BY earnings DESC  
LIMIT 1;

23

Behavior with Not Enough RAM

It
er

at
io

n
ti

m
e

(s
)

0

25

50

75

100

% of working set in memory

Cache disabled 25% 50% 75% Fully cached

11.5

29.7
40.7

58.1
68.8

24

What’s Next?
Recall that Spark’s model was motivated by two
emerging uses (interactive and multi-stage apps)

Another emerging use case that needs fast data
sharing is stream processing
»Track and update state in memory as events arrive
» Large-scale reporting, click analysis, spam filtering, etc

25

Streaming Spark
Extends Spark to perform streaming computations
Runs as a series of small (~1 s) batch jobs, keeping
state in memory as fault-tolerant RDDs
Intermix seamlessly with batch and ad-hoc queries

tweetStream
 .flatMap(_.toLower.split)
 .map(word => (word, 1)) 
 .reduceByWindow(“5s”, _ + _)

T=1

T=2

…

map reduceByWindow

[Zaharia et al, HotCloud 2012] 26

map() vs flatMap()
The best explanation:
https://www.linkedin.com/pulse/difference-between-map-
flatmap-transformations-spark-pyspark-pandey

flatMap = map + flatten

27

https://www.linkedin.com/pulse/difference-between-map-flatmap-transformations-spark-pyspark-pandey
https://www.linkedin.com/pulse/difference-between-map-flatmap-transformations-spark-pyspark-pandey

Streaming Spark
Extends Spark to perform streaming computations
Runs as a series of small (~1 s) batch jobs, keeping
state in memory as fault-tolerant RDDs
Intermix seamlessly with batch and ad-hoc queries

tweetStream
 .flatMap(_.toLower.split)
 .map(word => (word, 1)) 
 .reduceByWindow(5, _ + _)

T=1

T=2

…

map reduceByWindow

[Zaharia et al, HotCloud 2012]

Result: can process 42 million records/second 
(4 GB/s) on 100 nodes at sub-second latency

28

GraphX
Parallel graph processing

Extends RDD -> Resilient Distributed Property Graph
» Directed multigraph with properties attached to each vertex

and edge

Limited algorithms
» PageRank
» Connected Components
» Triangle Counts

29

MLlib

30https://spark.apache.org/docs/latest/mllib-guide.html

