Outline

• Motivation
• Similarity search – distance functions
• Linear Forecasting
• Non-linear forecasting
• Conclusions
Problem definition

• **Given**: one or more sequences

 \(x_1, x_2, \ldots, x_t, \ldots \)

 \((y_1, y_2, \ldots, y_t, \ldots) \)

 \((...) \)

• **Find**

 – similar sequences; forecasts

 – patterns; clusters; outliers
Motivation - Applications

• Financial, sales, economic series

• Medical
 – ECGs +; blood pressure etc monitoring
 – reactions to new drugs
 – elderly care
Motivation - Applications (cont’d)

• ‘Smart house’
 – sensors monitor temperature, humidity, air quality

• video surveillance
Motivation - Applications (cont’d)

- Weather, environment/anti-pollution
 - volcano monitoring
 - air/water pollutant monitoring
Motivation - Applications (cont’d)

- Computer systems
 - ‘Active Disks’ (buffering, prefetching)
 - web servers (ditto)
 - network traffic monitoring
 - ...

Stream Data: Disk accesses

Disk traffic

#bytes

time
Problem #1:

Goal: given a signal (e.g., #packets over time)
Find: patterns, periodicities, and/or compress lynx caught per year (packets per day; temperature per day)
Problem#2: Forecast

Given x_t, x_{t-1}, \ldots, forecast x_{t+1}
Problem #2: Similarity search

E.g., Find a 3-tick pattern, similar to the last one
Problem #3:

• Given: A set of correlated time sequences
• Forecast ‘Sent(t)’
Important observations

Patterns, rules, forecasting and similarity indexing are closely related:

• To do forecasting, we need
 – to find patterns/rules
 – to find similar settings in the past

• to find outliers, we need to have forecasts
 – (outlier = too far away from our forecast)
Outline

• Motivation
• Similarity search and distance functions
 – Euclidean
 – Time-warping
• ...
Importance of distance functions

Subtle, but absolutely necessary:
• A ‘must’ for similarity indexing (-> forecasting)
• A ‘must’ for clustering

Two major families
 – Euclidean and Lp norms
 – Time warping and variations
Euclidean and L_p

L_1: city-block = Manhattan
$L_2 = Euclidean$
L_∞
Observation #1

Time sequence -> n-d vector
Observation #2

Euclidean distance is closely related to
– cosine similarity
– dot product
Time Warping

- allow accelerations - decelerations
 - (with or without penalty)
- THEN compute the (Euclidean) distance (+ penalty)
- related to the string-editing distance
Time Warping

‘stutters’:

The text in the image is about time warping, which is a phenomenon observed in waveforms. The diagrams illustrate this concept, showing how certain segments of the waveform appear to be delayed or sped up, creating a stuttering effect. The arrows indicate the points of delay or acceleration in the waveform.
Time warping

Q: how to compute it?
A: dynamic programming

\[D(i, j) = \text{cost to match} \]

prefix of length \(i \) of first sequence \(x \) with prefix of length \(j \) of second sequence \(y \)
Time warping
Time warping

Thus, with no penalty for stutter, for sequences

\[x_1, x_2, \ldots, x_i,; \quad y_1, y_2, \ldots, y_j \]

https://nipunbatra.github.io/blog/2014/dtw.html
Time warping

VERY SIMILAR to the string-editing distance

no stutter
x-stutter
y-stutter
Time warping

- Complexity: $O(M*N)$ - quadratic on the length of the strings
- Many variations (penalty for stutters; limit on the number/percentage of stutters; …)
- popular in voice processing
 [Rabiner + Juang]
Other Distance functions

• piece-wise linear/flat approx.; compare pieces [Keogh+01] [Faloutsos+97]
• ‘cepstrum’ (for voice [Rabiner+Juang])
 – do DFT; take log of amplitude; do DFT again!
• Allow for small gaps [Agrawal+95]

See tutorial by [Gunopulos + Das, SIGMOD01]
Other Distance functions

- In [Keogh+, KDD’04]: parameter-free, MDL based
Conclusions

Prevailing distances:
 – Euclidean and
 – time-warping
Outline

• Motivation
• Similarity search and distance functions
 Linear Forecasting
• Non-linear forecasting
• Conclusions
Linear Forecasting
Outline

• Motivation
• ...
• Linear Forecasting
 – Auto-regression: Least Squares; RLS
 – Co-evolving time sequences
 – Examples
 – Conclusions
Problem#2: Forecast

• Example: give x_{t-1}, x_{t-2}, …, forecast x_t
Forecasting: Preprocessing

MANUALLY:
remove trends

spot periodicities

7 days

Problem#2: Forecast

• Solution: try to express x_t as a linear function of the past: x_{t-1}, x_{t-2}, \ldots, (up to a window of w)

Formally:

$$x_t \approx a_1 x_{t-1} + \ldots + a_w x_{t-w} + noise$$
(Problem: Back-cast; interpolate)

- Solution - interpolate: try to express x_t as a linear function of the past AND the future:
 $x_{t+1}, x_{t+2}, \ldots x_{t+w_{future}}; x_{t-1}, \ldots x_{t-w_{past}}$
 (up to windows of w_{past}, w_{future})

- EXACTLY the same algo’s
Express what we **don’t know** (= “dependent variable”) as a linear function of what we **know** (= “independent variable(s)”).
Linear **Auto** Regression

<table>
<thead>
<tr>
<th>Packs</th>
<th>Sent(t)</th>
</tr>
</thead>
<tbody>
<tr>
<td>43</td>
<td></td>
</tr>
<tr>
<td>54</td>
<td></td>
</tr>
<tr>
<td>72</td>
<td></td>
</tr>
<tr>
<td>...</td>
<td></td>
</tr>
<tr>
<td>??</td>
<td></td>
</tr>
</tbody>
</table>
Linear Auto Regression

Lag $w = 1$

Dependent variable = # of packets sent ($S[t]$)

Independent variable = # of packets sent ($S[t-1]$)
More details:

- Q1: Can it work with window $w > 1$?
- A1: YES!
More details:

- Q1: Can it work with window $w > 1$?
- A1: YES! (we’ll fit a hyper-plane, then!)
More details:

- Q1: Can it work with window $w > 1$?
- A1: YES! (we’ll fit a hyper-plane, then!)
More details:

• Q1: Can it work with window $w > 1$?
• A1: YES! The problem becomes:

$$X_{[N \times w]} \times a_{[w \times 1]} = y_{[N \times 1]}$$

• OVER-CONSTRAINED
 – a is the vector of the regression coefficients
 – X has the N values of the w indep. variables
 – y has the N values of the dependent variable
More details:

- $X_{[N \times w]} \times a_{[w \times 1]} = y_{[N \times 1]}$

Ind-vari1 Ind-vari-w

time
More details:

- \(X_{[N \times w]} \times a_{[w \times 1]} = y_{[N \times 1]} \)

Ind-var1

Ind-var-w

time
More details

• Q2: How to estimate $a_1, a_2, \ldots a_w = a$?
• A2: with Least Squares fit

$$a = (X^T \times X)^{-1} \times (X^T \times y)$$

• (Moore-Penrose pseudo-inverse)
• a is the vector that minimizes the RMSE from y
More details

• Straightforward solution:

\[
a = (X^T \times X)^{-1} \times (X^T \times y)
\]

- \(a\) : Regression Coeff. Vector
- \(X\) : Sample Matrix

• Observations:
 – Sample matrix \(X\) grows over time
 – needs matrix inversion
 – \(O(N \times w^2)\) computation
 – \(O(N \times w)\) storage
Even more details

- Q3: Can we estimate a incrementally?
- A3: Yes, with the brilliant, classic method of “Recursive Least Squares” (RLS) (see, e.g., [Yi+00], for details).
- We can do the matrix inversion, WITHOUT inversion! (How is that possible?!)
Even more details

• Q3: Can we estimate \(a \) incrementally?
• A3: Yes, with the brilliant, classic method of “Recursive Least Squares” (RLS) (see, e.g., [Yi+00], for details).
• We can do the matrix inversion, WITHOUT inversion! (How is that possible?!)
• A: our matrix has special form: \((X^T X)\)
At the $N+1$ time tick:
More details: key ideas

- Let $G_N = (X_N^T \times X_N)^{-1}$ ("gain matrix")
- G_{N+1} can be computed recursively from G_N without matrix inversion
Comparison:

- **Straightforward Least Squares**
 - Needs huge matrix (growing in size) \(O(N \times w)\)
 - Costly matrix operation \(O(N \times w^2)\)

- **Recursive LS**
 - Need much smaller, fixed size matrix \(O(w \times w)\)
 - Fast, incremental computation \(O(1 \times w^2)\)
 - no matrix inversion

\[N = 10^6, \quad w = 1-100\]
EVEN more details:

Let’s elaborate
(VERY IMPORTANT, VERY VALUABLE!)

I x w row vector
EVEN more details:
EVEN more details:

[w x 1] [w x (N+1)] [(N+1) x w] [w x (N+1)] [(N+1) x 1]
EVEN more details:

\[[w \times (N+1)] \quad [(N+1) \times w] \]
EVEN more details:

‘gain matrix’

wxw wxw 1x1 wxw wx1 lwx wxw

SCALAR!
Altogether:

where
I: \(w \times w \) identity matrix
\(\delta \): a large positive number
Comparison:

- **Straightforward Least Squares**
 - Needs huge matrix (growing in size) \(O(N \times w) \)
 - Costly matrix operation \(O(N \times w^2) \)

- **Recursive LS**
 - Need much smaller, fixed size matrix \(O(w \times w) \)
 - Fast, incremental computation \(O(1 \times w^2) \)
 - no matrix inversion

\[N = 10^6, \quad w = 1-100 \]
Pictorially:

• Given:
Pictorially:

new point
Pictorially:

RLS: quickly compute new best fit
Even more details

• Q4: can we ‘forget’ the older samples?
• A4: Yes - RLS can easily handle that [Yi+00]:
Adaptability - ‘forgetting’

Independent Variable
eg., #packets sent

Dependent Variable
eg., #bytes sent
Adaptability - ‘forgetting’

Trend change

(R)LS with no forgetting

Dependent Variable
eg., #bytes sent

Independent Variable
eg. #packets sent
Adaptability - ‘forgetting’

Trend change

• RLS: can *trivially* handle ‘forgetting’