

Classification Key Concepts

Mahdi Roozbahani

Lecturer, Computational Science and Engineering, Georgia Tech

How will I rate "Chopin's 5th Symphony"?

Songs	Like?
Some nights	••
Skyfall	•
Comfortably numb	0 0
We are young	••
	•••
	•••
Chopin's 5th	???

Classification

What tools do you need for classification?

- **1. Data** $S = \{(x_i, y_i)\}_{i=1,...,n}$
 - \circ x_i : data example with d attributes
 - \circ y_i : label of example (what **you** care about)

- 2. Classification **model** *f*_(*a,b,c,...) with some* **parameters** *a*, *b*, *c*,...</sub>
- **3.** Loss function L(y, f(x))
 - how to penalize mistakes

Terminology Explanationdata example = data instance
attribute = feature = dimension
label = target attribute \odot X_i : data example with d attributes $x_i = (x_{i1}, \dots, x_{id})$ \circ Y_i : label of example $(x_i, y_i)_{i=1,\dots,n}$

Song name	Artist	Length	 Like?
Some nights	Fun	4:23	 ••
Skyfall	Adele	4:00	 •••
Comf. numb	Pink Fl.	6:13	 (• • •
We are young	Fun	3:50	 ••
Chopin's 5th	Chopin	5:32	 ??

What is a "model"?

"a simplified representation of reality created to serve a purpose" Data Science for Business Example: maps are abstract models of the physical world

There can be many models!!

(Everyone sees the world differently, so each of us has a different model.)

In data science, a model is **formula to estimate what you care about**. The formula may be mathematical, a set of rules, a combination, etc.

Training a classifier = building the "model"

How do you learn appropriate values for parameters *a*, *b*, *c*, ... ?

Analogy: how do you know your map is a "good" map of the physical world?

Classification loss function

Most common loss: 0-1 loss function

$$L_{0-1}(y,f(x))=\mathbb{I}(y\neq f(x))$$

More general loss functions are defined by a *m x m* cost matrix *C* such that

$$L(y, f(x)) = C_{ab}$$

where $y = a$ and $f(x) = b$

Class	P0	P1
Т0	0	C ₁₀
T1	C ₀₁	0

T0 (true class 0), **T1** (true class 1)

P0 (predicted class 0), P1 (predicted class 1)

An ideal model should correctly estimate:

- known or seen data examples' labels
- unknown or unseen data examples' labels

	Song name	Artist	Length	 Like?
	Some nights	Fun	4:23	 ••
	Skyfall	Adele	4:00	
	Comf. numb	Pink Fl.	6:13	 (• • •
	We are young	Fun	3:50	 ••
*	Chopin's 5th	Chopin	5:32	 ??

Training a classifier = building the "model"

- Q: How do you learn appropriate values for parameters a, b, c, ... ? (Analogy: how do you know your map is a "good" map?)
- $y_i = f_{(a,b,c,...)}(x_i), i = 1, ..., n$
 - Low/no error on training data ("seen" or "known")
- $y = f_{(a,b,c,\dots)}(x)$, for any new x
 - Low/no error on test data ("unseen" or "unknown")

It is very easy to achieve perfect classification on training/seen/known data. Why?

If your model works really well for *training* data, but poorly for *test* data, your model is "overfitting".

How to avoid overfitting?

Example: one run of 5-fold cross validation

You should do a **few runs** and **compute the average** (e.g., error rates if that's your evaluation metrics)

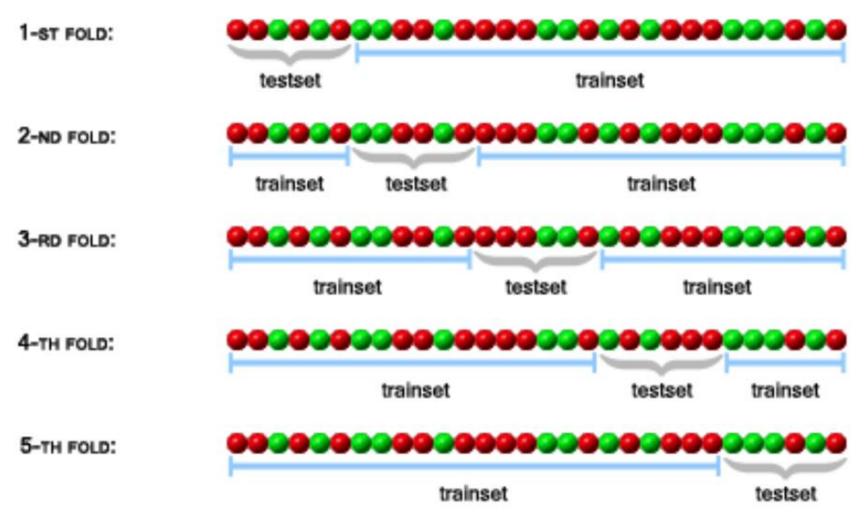
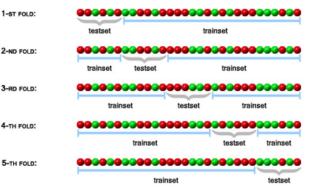


Image credit: http://stats.stackexchange.com/questions/1826/cross-validation-in-plain-english

Cross validation

- **1**. Divide your data into n parts
- 2.Hold 1 part as "test set" or "hold out set"
- **3.**Train classifier on remaining n-1 parts "training set"
- 4.Compute test error on test set
- 5.Repeat above steps n times, once for each n-th part
- 6.Compute the average test error over all n folds
 - (i.e., cross-validation test error)



Cross-validation variations

K-fold cross-validation

- Test sets of size (n / K)
- K = 10 is most common (i.e., 10-fold CV)

Leave-one-out cross-validation (LOO-CV)

• test sets of size 1

Example: k-Nearest-Neighbor classifier

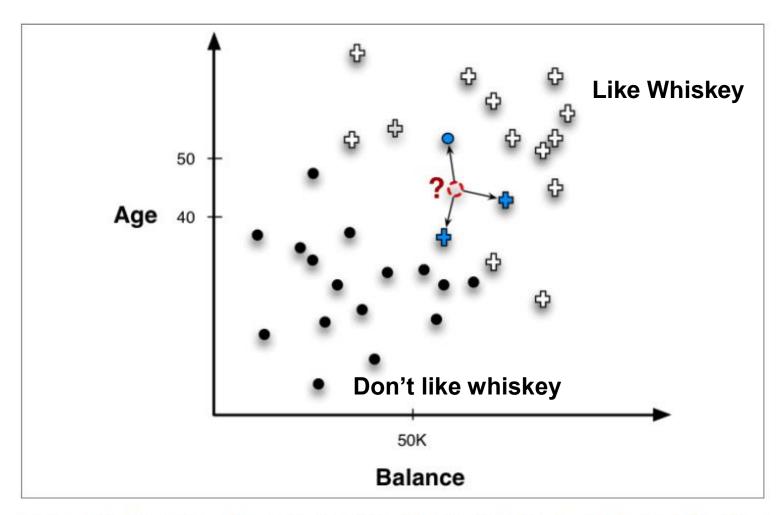


Figure 6-2. Nearest neighbor classification. The point to be classified, labeled with a question mark, would be classified + because the majority of its nearest (three) neighbors are +. Image credit: Data Science for Business

But k-NN is so simple!

It can work really well! **Pandora** (acquired by SiriusXM) uses it or has used it: <u>https://goo.gl/foLfMP</u> (from the book "Data Mining for Business Intelligence")

What are good models?

Simple (few parameters)

Effective

Complex (more parameters)

Effective

(if significantly more so than simple methods)

Complex (many parameters)

Not-so-effective

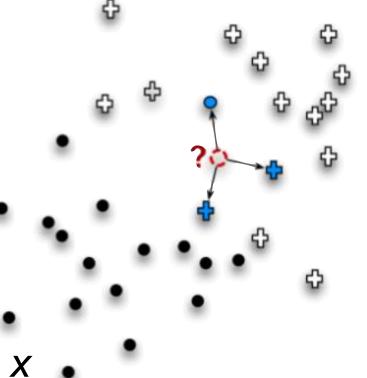
k-Nearest-Neighbor Classifier

The classifier:

f(x) = majority label of the • k nearest neighbors (NN) of x

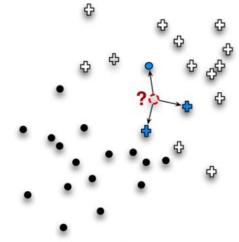
Model parameters:

- Number of neighbors k
- Distance/similarity function d(.,.)



k-Nearest-Neighbor Classifier

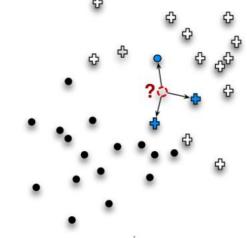
If *k* and *d(.,.)* are fixed Things to learn: ? How to learn them: ?



If d(.,.) is fixed, but you can change kThings to learn: ? How to learn them: ?

$x_i = (x_{i1}, \dots, x_{id}); y_i = \{1, \dots, m\}$ **k-Nearest-Neighbor Classifier**

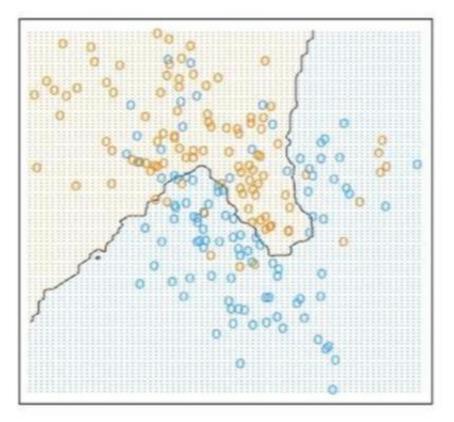
If *k* and *d(.,.)* are fixed **Things to learn:** Nothing **How to learn them:** N/A



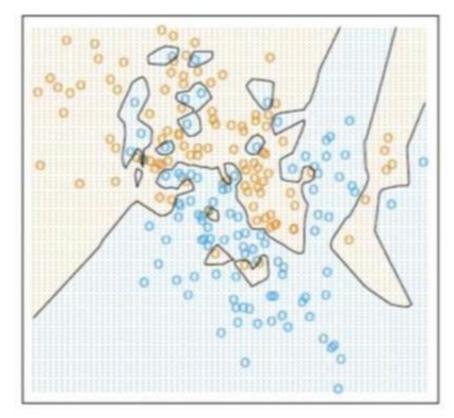
If *d(.,.)* is fixed, but you can change *k* **Selecting** *k*: How?

How to find best k in k-NN? Use cross validation (CV).

15-NN



1-NN

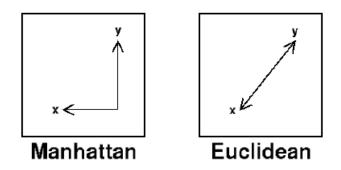


Pretty good!

Overfitted

k-Nearest-Neighbor Classifier

If k is fixed, but you can change d(.,.)



Possible distance functions:

- Euclidean distance: $||x_i x_j||_2 = \sqrt{(x_i x_j)^{\top}(x_i x_j)}$
- Manhattan distance: $||x_i x_j||_1 = \sum_{l=1}^d |x_{il} x_{jl}|$

$$x_i = (x_{i1}, \dots, x_{id}); y_i = \{1, \dots, m\}$$

Summary on k-NN classifier

Advantages

- Little learning (unless you are learning the distance functions)
- Quite powerful in practice (and has theoretical guarantees)

Caveats

• Computationally expensive at test time

Reading material:

 The Elements of Statistical Learning (ESL) book, Chapter 13.3

https://web.stanford.edu/~hastie/ElemStatLearn/