Advice for Getting Models Work

Mahdi Roozbahani
Lecturer, Computational Science and Engineering, Georgia Tech

These slides are adopted from Polo, Andrew W. Moore, and Vivek Srikumar, and Chao Zhang
Outline

• Model Diagnostics
• Error Analysis
• Practical Advice
Debugging Machine Learning

Suppose you train an SVM or a logistic regression classifier for spam detection

You *obviously* follow best practices for finding hyper-parameters (such as cross-validation)

Your classifier is only 75% accurate

What can you do to improve it?

(assuming that there are no bugs in the code)
Different Ways to Improve Your Model

More training data

Features
1. Use more features
2. Use fewer features
3. Use other features

Better training
1. Run for more iterations
2. Use a different algorithm
3. Use a different classifier
4. Play with regularization

Tedious!
And prone to errors, dependence on luck
Let us try to make this process more methodical
First Step: Diagnose Your Model

Some possible problems:

1. Over-fitting (high variance)
2. Under-fitting (high bias)
3. Your learning does not converge
4. Are you measuring the right thing?
Overfitting v.s. Underfitting

Over-fitting: The training accuracy is much higher than the test accuracy
 - The model explains the training set very well, but poor generalization

Under-fitting: Both accuracies are unacceptably low
 - The model can not represent the concept well enough
Overfitting (High Variance)

Test error keeps decreasing as training set increases → more data will help

Large gap between train and test error

Typically seen for more complex models

Generalization error/ test error

Training error

Size of training data

Error
Underfitting (High Bias)

Both train and test error are unacceptable (But the model seems to converge)
Typically seen for more simple models

Generalization error/ test error

Training error

Error

Size of training set
Different Ways to Improve Your Model

More training data
- Helps with over-fitting

Features
1. Use more features - Helps with under-fitting
2. Use fewer features - Helps with over-fitting
3. Use other features - Could help with over-fitting and under-fitting

Better training
1. Run for more iterations
2. Use a different algorithm
3. Use a different classifier
4. Play with regularization - Could help with over-fitting and under-fitting
Diagnostics

Some possible problems:

✓ Over-fitting (high variance)

✓ Under-fitting (high bias)

3. Your learning does not converge

4. Are you measuring the right thing?
Have Your Model Converged?

If learning is framed as an optimization problem, track the objective.
Have Your Model Converged?

If learning is framed as an optimization problem, track the objective.

Not always easy to decide

Not yet converged here

How about here?

Objective

Iterations
Have Your Model Converged?

If learning is framed as an optimization problem, track the objective

Helps to debug

If we are doing gradient descent on a convex function the objective can’t increase

(Caveat: For SGD, the objective will slightly increase occasionally, but not by much)

Something is wrong
Different Ways to Improve Your Model

More training data

- Helps with overfitting

Features

1. Use more features
 - Helps with under-fitting
2. Use fewer features
 - Helps with over-fitting
3. Use other features
 - Could help with over-fitting and under-fitting

Better training

1. Run for more iterations
2. Use a different algorithm
 - Track the objective for convergence
3. Use a different classifier
4. Play with regularization
 - Could help with over-fitting and under-fitting
Diagnostics

Some possible problems:

- Over-fitting (high variance)
- Under-fitting (high bias)
- Your learning does not converge

4. Are you measuring the right thing?
What to Measure

• Accuracy of prediction is the most common measurement

• But if your data set is unbalanced, accuracy may be misleading
 – 1000 positive examples, 1 negative example
 – A classifier that always predicts positive will get 99.9% accuracy. Has it really learned anything?

• Unbalanced labels \rightarrow measure label specific precision, recall and F-measure
 – Precision for a label: Among examples that are predicted with label, what fraction are correct
 – Recall for a label: Among the examples with given ground truth label, what fraction are correct
 – F-measure: Harmonic mean of precision and recall
Outline

• Model Diagnostics
• Error Analysis
• Practical Advice
Machine Learning in Context
Error Analysis

Generally machine learning plays a small role in a larger application

• Pre-processing
• Feature extraction (possibly by other ML based methods)
• Data transformations

How much do each of these contribute to the error?

Error analysis tries to explain why a system is not performing perfectly
Example: Text Processing System

Each of these could be ML driven
Or deterministic
But still error prone

How much do each of these contribute to the error of the final application?
Example: Text Processing System

Plug in the ground truth for each intermediate component and see how much the accuracy of the final system changes.

<table>
<thead>
<tr>
<th>System</th>
<th>Accuracy</th>
</tr>
</thead>
<tbody>
<tr>
<td>End-to-end predicted</td>
<td>55%</td>
</tr>
<tr>
<td>With ground truth words</td>
<td>60%</td>
</tr>
<tr>
<td>+ ground truth parts-of-speech</td>
<td>84%</td>
</tr>
<tr>
<td>+ ground truth parse trees</td>
<td>89%</td>
</tr>
<tr>
<td>+ ground truth final output</td>
<td>100%</td>
</tr>
</tbody>
</table>
Error Analysis

Explaining difference between the performance between a strong model and a much weaker one (a baseline)

Usually seen with features
- Suppose we have a collection of features and our system does well, but we don’t know which features are giving us the performance
- Evaluate simpler systems that progressively use fewer and fewer features to see which features give the highest boost

It is not enough to have a classifier that works; it is useful to know why it works.

Helps interpret predictions, diagnose errors and can provide an audit trail
Outline

• Model Diagnostics
• Error Analysis
• Practical Advice
Advice for ML Workflow in Practice

Say you want to build a classifier that identifies whether a real physical fish is salmon or tuna.

How do you go about this?

The slow approach

1. Carefully identify features, get the best data, the software architecture, maybe design a new learning algorithm.
2. Implement it and hope it works.

Advantage: Perhaps a better approach, maybe even a new learning algorithm. Research.

The hacker’s approach

1. First implement something.
2. Use diagnostics to iteratively make it better.

Advantage: Faster release, will have a solution for your problem quicker.
Advice for ML Workflow in Practice

Say you want to build a classifier that identifies whether a real physical fish is salmon or tuna. How do you go about this?

The slow approach

1. Carefully identify features, get the best data, build an architecture, design your algorithm
2. Implement it and hope it works

Advantage: Perhaps a better approach, maybe even a new learning algorithm. Research.

The hacker’s approach

1. First implement something, get it working, make it better
2. Be wary of premature optimization
3. Be equally wary of prematurely committing to a bad path

Advantage: Faster release, will have a solution for your problem quicker
What to Watch Out For?

• Do you have the right evaluation metric?
 – And does your loss function reflect it?

• Beware of contamination: Ensure that your training data is not contaminated with the test set
 – Learning = generalization to new examples
 – Do not see your test set either. You may inadvertently contaminate the model
 – Beware of contaminating your features with the label!
 – (Be suspicious of perfect predictors)
What to Watch Out For?

- Be aware of bias vs. variance tradeoff (or over-fitting vs. under-fitting)

- Be aware that intuitions may not work in high dimensions
 - No proof by picture
 - Curse of dimensionality

- A theoretical guarantee may only be theoretical
 - May make invalid assumptions (eg: if the data is separable)
 - May only be legitimate with infinite data (eg: estimating probabilities)
 - Experiments on real data are equally important
What to Watch Out For?

• Learn simpler models first
 – If nothing, at least they form a baseline that you can improve upon

• Ensembles seem to work better

• Think about whether your problem is learnable at all
 – Learning = generalization