
TOURVIZ: Interactive Visualization of Connection
Pathways in Large Graphs

Duen Horng (Polo) Chau
Carnegie Mellon University

dchau@cs.cmu.edu

Leman Akoglu
Carnegie Mellon University
lakoglu@cs.cmu.edu

Jilles Vreeken
University of Antwerp

jilles.vreeken@ua.ac.be
Hanghang Tong

IBM T.J. Watson Research
htong@us.ibm.com

Christos Faloutsos
Carnegie Mellon University
christos@cs.cmu.edu

ABSTRACT
We present TOURVIZ, a system that helps its users to interactively
visualize and make sense in large network datasets. In particu-
lar, it takes as input a set of nodes the user specifies as of interest
and presents the user with a visualization of connection subgraphs
around these input nodes. Each connection subgraph contains good
pathways that highlight succinct connections among a ‘close-by’
group of input nodes. TOURVIZ combines visualization with rich
user interaction to engage and help the user to further understand
the relations among the nodes of interest, by exploring their neigh-
borhood on demand as well as modifying the set of interest nodes.

We demonstrate TOURVIZ’s usage and benefits using the DBLP
graph, consisting of authors and their co-authorship relations, while
our system is designed generally to work with any kind of graph
data. We will invite the audience to experiment with our system
and comment on its usability, usefulness, and how our system can
help with their research and improve the understanding of data in
other domains.

Categories and Subject Descriptors
H.3.3 [Information Storage and Retrieval]; H.5.2 [Information
Interfaces and Presentation]

General Terms
Algorithms, Design, Human Factors

Keywords
Sensemaking, Large networks, Connection subgraphs

1. INTRODUCTION
Finding associations among a set of objects is an important prob-

lem in many domains ranging from biology (gene/protein interac-
tions), security (criminal/terrorist interactions), immunology (pa-
tient interactions), and so on. Often, these objects are connected
with certain type of relations within a large network. In such a
network setting, the task of finding associations among objects can
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Figure 1: Screenshot of TOURVIZ showing a user exploring
the connection subgraphs among a set of authors of interest
(square nodes) in KDD and RECOMB (computational biol-
ogy). Edges are co-authorship relations.

be thought of finding succinct connection pathways among these
objects. While these connection pathways reveal how the set of ob-
jects associate with one another in the network, the additional nodes
(connectors) revealed on these pathways provide useful informa-
tion about other nodes that might be of interest in understanding
these associations.

The above setting finds numerous applications in diverse do-
mains. For example, given a gene interaction network, an exper-
iment may reveal for particular conditions a number of genes to be
up- (or down-) regulated, and a biologist might be interested in find-
ing associations between these genes. This would give him/her a
good summary of possible pathways the genes may be involved in.
Another example relates to security; given a set of suspicious peo-
ple detected by an anomaly detection algorithm, an analyst could
use our system to group them to reveal associations; by finding
how as well as through whom else they are connected in the net-
work. Moreover, given an event affecting a set of people connected
via a network, e.g. people in a geographical region affected by
a certain disease, an immunolog can use our system to figure out
the pathways through which the disease spread among these peo-
ple, potentially discovering other affected people on the connection
pathways. More applications can be given, however, the main point



is that the system we shortly introduce is quite general and can be
used in various settings independent of a specific domain.

We developed TOURVIZ (Figure1), an interactive visualization
system, for a domain analyst to explore and understand the asso-
ciations among a set of objects (i.e. nodes) in a network. The
analyst selects a set of nodes that s/he is interested in within the
network and specifies them as ‘marked’. Next, within TOURVIZ
an efficient algorithm finds succinct connection subgraphs among
the marked nodes. Intuitively, ‘close-by’ (highly associated nodes)
in the network can be connected by simple paths, while ‘far away’
(not-so-highly associated) nodes are hard to link together. There-
fore, the algorithm returns possibly multiple connection subgraphs
for multiple groups of ‘close-by’ nodes. TOURVIZ offers visualiza-
tion features to show the analyst these groups and their associated
connection subgraphs found by our algorithm. Our system also
embodies interaction features for the analyst to update the nodes of
interest on demand.

We summarize our main contributions as follows:
• We build a new system called TOURVIZ to provide users

with the understanding of how a set of nodes in a network are
associated, through visualizing good connections and con-
nectors among them. TOURVIZ integrates novel algorithms
we developed [1] for finding succinct connection pathways
among groups of highly associated nodes.
• TOURVIZ integrates our novel algorithm into an interactive

environment that allows users to easily specify nodes of in-
terest, reveal connections among them through visualization,
and iteratively refine their specifications to improve their un-
derstanding.

2. DEMONSTRATING TOURVIZ
We will demonstrate TOURVIZ’s usage, user interaction and al-

gorithm through scenarios on understanding connections among re-
searchers in various computer science fields in the DBLP1 coau-
thorship graph, which contains about 329K authors (nodes) and
1094K coauthorship relations (edges).

Scenario. Here, we illustrate one example scenario, where our
user uses TOURVIZ to explore and understand the connections be-
tween several researchers in KDD (data mining, machine learning)
and RECOMB (computational biology). This scenario will touch
upon major features of TOURVIZ.

Our user begins by searching for authors that he is familiar with,
using TOURVIZ’s search feature (Figure 2). Authors whose names
contains the search text show up as a list. They can be sorted alpha-
betically, or by various metrics that TOURVIZ has pre-computed for
the graph (the first time the graph is loaded), e.g., PageRank score,
degree, etc. Once a match is found, our user drags the name into
the visualization, which turns into a circle, its size proportional to
its coauthor count (i.e., node degree).

Our user proceeds to drag in more authors he is familiar with,
in the domains of KDD and RECOMB. Although the user is fa-
miliar with these researchers’ work, s/he does not recall how they
have been collaborating. In particular, s/he is interested in using
TOURVIZ to figure out the researchers who have been working at
the intersection of these two domains.

To help keep track of the two groups of researchers, our user
groups them into KDD and RECOMB using TOURVIZ’s grouping
feature (Figure 3). Each group is assigned a color, and its nodes
enclosed by a convex hull.

These are all the nodes that our user wants to create a connection
subgraph for (Figure 3). To mark these nodes as inputs, our user
1http://dblp.uni-trier.de/

Figure 2: User searching for “jiawei”. Matching authors
shown in a list, sorted by the authors’ coauthor counts (i.e.,
node degrees in the graph. Dragging the name of “Jiawei Han”
into the visualization turns it into a circle; the name becomes
the node label. Node size is scaled by degree. The yellow halo
around the node indicates it is a match.

Figure 3: Our user has dragged multiple authors into the vi-
sualization, and grouped them into KDD and RECOMB using
TOURVIZ’s grouping feature. Each group is enclosed by a con-
vex hull. Group names are provided by the user. Blue square
nodes are the marked input nodes to TOURVIZ.

changes their shapes into squares (node colors do not matter). Next,
they are given as input to TOURVIZ’s algorithm that finds the best
subgraph. We will explain how the algorithm works in more detail
in Section 3. Simply put, it finds a simple subgraph spanning all
the input nodes that also has as few edges and as few additional
intermediary nodes as possible.

Figure 4 shows the result of the algorithm —a tree whose edges
are shown as thick orange lines, connecting the marked nodes with
a few intermediary nodes (orange circles). Thin edges are other
relations among all the nodes being displayed, but not part of the
tree. Most interesting to our user is the discovery of David Hecker-
man; a prolific researcher who have been publishing with authors
who frequent KDD and RECOMB. Additional discoveries include
the intermediary nodes, that is the authors such as Ziv Bar-Joseph
and Ari Frank, who are good connectors among the authors that our
user is interested in observing the relations.

Here, since the whole tree has few nodes, our user can rearrange
the nodes manually to create a visually pleasing layout. Optionally,
he can also use TOURVIZ’s built-in force-directed layout feature to
automatically layout the nodes, which often helps reduce node and
edge overlap.



Figure 4: Screenshot of TOURVIZ showing our user exploring the connection subgraph among a set of authors of interest (blue,
square nodes) in KDD and RECOMB (computational biology). Node shape is set using the first drop-down menu on the left; these
nodes serve as input to the algorithm that finds the best tree (thick, orange edges) that connects them; other edges are shown as thin
lines. Edges are co-authorship relations. Node size is scaled by the node’s degree. TOURVIZ comes with useful visualization features:
pan and zoom tool on the first row, color tools for nodes and edges, node label tool for specifying font size and node attribute to show
(node “name” is chosen here). Our user can search for authors using the Search Panel on the right.

Our user can interactively add or remove nodes (marked or un-
marked), and refresh the visualization with an updated connection
subgraph by invoking the algorithm. Nodes that were previously
in the visualization will maintain their positions, to help our user
preserve his mental model about the connections.

Engaging Our Audience. We will invite our audience to try
out TOURVIZ with their own set of authors, and collect their feed-
back on TOURVIZ’s usability and usefulness. Since we created
TOURVIZ to be a general tool, we will be particularly interested in
discussing with our audience how TOURVIZ may help them with
research and data visualization in their domains.

3. TECHNICAL DETAILS
In this section, we first provide details about how the algorithm in

our system works, and then give information about implementation
and integration with the visualization component.

3.1 Method Details
Idea of encoding. Our method addresses the problem of suc-

cinctly describing a given set of marked nodes in a graph. We for-
mulate this problem using an encoding scheme, which involves a
sender and a receiver. In this scheme both the sender and the re-
ceiver know the graph structure G = (V,E), while only the sender
knows the set of marked nodes. The goal of the sender, then, is to
transmit to the receiver the information of which nodes are marked,
using as few bits as possible.

Intuitively, the sender could use fewer bits to encode ‘close-by’
marked nodes; by following a (short) path from one to another. For
each such path, the sender encodes the starting node using log |V |
bits. The following nodes on the path are described by encoding

the particular neighbor of the previous node i to go to the next node
i+1, which requires log di < log |V | bits since the degree of each
node in the graph is bounded by |V | − 1. A simple connection
subgraph for a group of ‘close-by’ nodes is the union of such paths.

Notice that the simplest subgraph is in fact a tree since it requires
fewer bits to directly refer to a node that is already encoded, com-
pared to following a path to it. In addition, low degree nodes are
preferred over hub-like node on the paths, since it takes fewer bits
to encode where to go next for such nodes. Intuitively, hub-like
nodes are avoided in connecting the marked nodes since practically
they connect everything in the graph and thus do not constitute in-
teresting candidates as connectors. All in all, we find one simple
tree for every group of ‘close-by’ marked nodes. Two groups are
separated if no path of cost less than log |V | bits exists inbetween.

Steiner tree problem. Simplicity of a connection tree is deter-
mined by the number of nodes the sender visits in this encoding,
how many unmarked nodes s/he visits, and in particular how eas-
ily per visited node s/he can identify which edge to follow next.
We show that the problem of finding the simplest tree with the
minimum encoding is NP-hard, with a reduction from the Directed
Steiner tree problem: Given a directed weighted graph G = (V,E)
and a subset of (marked) nodes M , find the minimum cost arbores-
cence that spans all (marked) nodes in M . The cost of the tree is
the sum of the weights (encoding costs) of its edges. The tree may
include (unmarked) nodes that are not in M , which are referred to
as Steiner nodes.

Fast heuristic methods. As the directed Steiner tree problem is
NP-hard, we develop four fast heuristic approximation algorithms
for large graphs. (1) The first and simplest method only consid-
ers the connected components induced on the marked nodes. (2)



The second method first builds the transitive closure graph of the
marked nodes in which each pair of marked nodes are connected
by an edge of weight equal to the minimum cost path inbetween
them (no edge if the path length is greater than log |V |). Next, it
runs a minimum arborescence algorithm on this small graph of M
nodes. Finally each edge in the returned tree(s) is expanded to in-
clude the original nodes on the path represented by that edge. (3)
The third method builds the minimum depth-1 tree(s) in which the
root marked node is connected to each other marked node with the
shortest path length. (4) Finally, the fourth method builds on the
depth-1 tree(s) to build larger depth trees, by finding intermediate
nodes that decrease the total cost. Our method returns the best tree
among found by various heuristics that has the minimum cost.

3.2 System Details
The visualization component of TOURVIZ system is written in

Java 1.7. built on top of the open-source JUNG network visualiza-
tion library [8] and with design based on the APOLO [2] system.
TOURVIZ stores the graph in a SQLite2 embedded database, for
its cross-platform portability. The graph database’s schema was
designed independently from the TOURVIZ system, so that differ-
ent graphs that follow the schema can be readily used. TOURVIZ
takes advantage of built-in features from SQLite, such as its full-
text search capability to quickly locate nodes whose attribute values
match users’ search text (Figure 2).

When the user interactively specifies the set of marked nodes
for which the connection subgraphs are to be found, the IDs of
these nodes are written to a temporary file. This file as well as
the directory for the network data are input to our algorithm which
is implemented in Matlab 7.10. The algorithm then outputs the
best connection tree(s) as well as small subgraphs around the seed
nodes (candidate graph). TOURVIZ shows the candidate graph and
highlights (in bold) the edges that correspond to the best tree edges.

4. RELATED WORK
TOURVIZ builds on a large body of research aimed at under-

standing and supporting how people can gain insights through net-
work visualization [7]. It provides several features to help people
specify the nodes of interest in a network and visualize connection
subgraphs in context of local neighborhoods around these nodes
that are not too overwhelming [2].

Much work has been done on finding connection subgraphs, in-
troduced by [4], and extended by [9] and [11]. Related work in-
clude expanding communities around a given set of seed nodes [10,
12] such that the modularity or conductance of the subgraph con-
taining the seed nodes is optimized. [13] finds the most ‘centered’
node that has strong connections (good paths) to most or all of the
seed nodes. [6] finds the subgraph up to a certain size which re-
tains most of the proximity between seed nodes. Proximity and
connection subgraphs are also exploited for visualization and sum-
marization [3, 5].

Few tools have integrated connection subgraphs algorithms to
interactively help people make sense of associations among nodes
in a graph, and they often only support some of the sensemaking
features offered by TOURVIZ, e.g., showing (multiple) connection
subgraphs only among highly associated groups of nodes, rather
than a single large subgraph including all nodes at once.

5. CONCLUSIONS
We presented TOURVIZ, an interactive system to help people

understand connections between sets of nodes in large graphs. Our

2www.sqlite.org

system integrates 1) novel algorithms that find the best subgraphs
for succinctly connecting these nodes; and 2) visualization and in-
teraction features that help people interactively and visually explore
such subgraphs.

We demonstrated TOURVIZ’s usage and benefits using a DBLP
co-authorship graph, which consists of 329K authors (nodes) and
1094K co-authorship relations (edges). We invite our audience to
try TOURVIZ, comment on its usability and usefulness, and discuss
how TOURVIZ may help with their work as well as data analytics
in other domains.
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