
Visual Graph Query Construction and Refinement

Robert Pienta, Fred Hohman, Acar Tamersoy, Alex Endert, Shamkant Navathe,
Hanghang Tong1, Duen Horng Chau

Georgia Institute of Technology, Arizona State University1

{pientars, fredhohman, tamersoy, endert}@gatech.edu, sham@cc.gatech.edu,
hanghang.tong@asu.edu1, polo@gatech.edu

ABSTRACT
Locating and extracting subgraphs from large network
datasets is a challenge in many domains, one that often re-
quires learning new querying languages. We will present
the first demonstration of Visage, an interactive visual
graph querying approach that empowers analysts to con-
struct expressive queries, without writing complex code (see
our video: https://youtu.be/l2L7Y5mCh1s). Visage guides
the construction of graph queries using a data-driven ap-
proach, enabling analysts to specify queries with varying
levels of specificity, by sampling matches to a query during
the analyst’s interaction. We will demonstrate and invite
the audience to try Visage on a popular film-actor-director
graph from Rotten Tomatoes.

CCS Concepts
•Human-centered computing → Visualization sys-
tems and tools; •Information systems → Search in-
terfaces;

Keywords
Graph querying, interactive querying, query construction

1. INTRODUCTION
From network security to bioinformatics, networks (or

graphs) are often used for modeling the complex relation-
ships among entities (e.g., who-buys-what, who-retweets-
whom, etc.). Finding interesting, suspicious, or malicious
patterns in these networks has been the core enabling tech-
nology for solving many important problems, such as detect-
ing suspicious trading behavior [11], or discovering fraud-
sters and their accomplices in online auction sites [7]. Graph
querying, subgraph matching and the emergence of new
graph-database approaches have made considerable progress
[4, 12, 9, 6].

Unfortunately, constructing and refining graph queries of-
ten requires learning new languages and debugging syntax

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

SIGMOD’17, May 14-19, 2017, Chicago, IL, USA
c© 2017 ACM. ISBN 978-1-4503-4197-4/17/05. . . $15.00

DOI: http://dx.doi.org/10.1145/3035918.3056418

Aliens

The	Terminator

Predator

All	Films:		‘Acon	&	Adventure’
							and	1980’s

VISAGE	Query Example Result

Cypher	Query
MATCH (film1:film)--(film2:film)--(film3:film),
 (film1)--(film3)
WHERE film1.genre = ‘Action & Adventure’ AND
 film2.genre = ‘Action & Adventure’ AND
 film3.genre = ‘Action & Adventure’ AND
 film1.year >= 1980 AND film1.year < 1990 AND
 film2.year >= 1980 AND film2.year < 1990 AND
 film3.year >= 1980 AND film3.year < 1990
RETURN film1, film2, film3

Figure 1: Top: an example Visage query for three
similar 80’s action films and a result. Bottom: the
same query as above, written in the Cypher query-
ing language. Visage’s interactive graph querying
approach allows analysts gradually form queries by
dragging and dropping query components. It pro-
vides an alternative to writing complex graph query-
ing code.

errors. Users often need to overcome steep learning curves
to learn querying languages specific to the graph databases
storing the graphs, writing many lines of code even for con-
ceptually simple queries, as demonstrated in Figure 1. We
created Visage [8], the Visual Adaptive Graph Engine,
which provides an adaptive, visual approach to graph query
construction and refinement, to simplify and speed up graph
query construction. Visage performs exact graph querying
on large graphs and supports a wide variety of different node
types and attributes. Our main contributions are:

• We introduce graph-autocomplete, an interaction tech-
nique for graphs that helps analysts construct and
refine queries, and prevent over-specification from
adding too many structural or feature constraints that
results in too few or even no results [1]. Graph-
autocomplete samples the current query in the back-
ground to stop analysts from constructing null-result-
queries by analyzing and eliminating impossible exten-
sions of the query.

Figure 2: Visage supports many query refinement approaches for constructing a query. (1) A broad query
with only node types and structure. (2) The first resulting match. (3) The Coen Brothers and the film O
Brother, Where Art Thou? are starred, fixing these nodes; with the nodes starred, only matches with those
nodes are displayed.

• We designed and developed the Visage system that
utilizes recent advances in graph-databases to sup-
port a spectrum of querying styles, from abstract to
example-driven approaches, while most other visual
graph querying systems do not [5, 2, 4]. In the abstract
case, analysts start with a very abstract query and nar-
row down the possible results by providing feature and
topological constraints. In the example-driven case,
originally proposed in the language query by example
(QBE) [13], analysts can specify an exact pattern and
abstract from that pattern into a query of their choice.
This technique allows analysts to start from an exam-
ple or keep certain values fixed in their query. In Vis-
age, the analyst can star a node to fix its place in
the query and across all of the results. We provide ex-
amples of both query-construction approaches in the
Scenario Section.

We will demonstrate how graph-autocomplete can be used
during the exploration process and how Visage’s simple in-
terface can create complex queries with minimal training.

62%

3

21

100%

0%

0%

7%

31%+

+

Figure 3: Each node has multiple interaction op-
tions: (1) text search for specific node values. (2)
Node controls: the pin fixes the node’s position;
the star fixes a particular value to the node (either
by text search or from selecting a particular result-
node); the magnifying glass opens the text search (at
1). (3) The + adds a node and displays background-
sampled, neighborhood-type distributions. Neigh-
boring types are shown by percentage; types that
do not occur in the underlying network are visibly
grayed out.

2. DEMONSTRATING VISAGE
We provide a demonstration scenario both to illustrate

how analysts may use Visage and to describe what we will
show the audience. Our scenario begins with a general query
of a known structure and narrows the search through query
refinement.

The Rotten Tomatoes Movie Graph.
We employ a Rotten Tomatoes film-actor-director graph1.

The graph has 58,763 nodes: 17,072 films, 8,576 directors,
and 33,115 actors. There are over 468,592 undirected edges
of three types: (1) film to film edges, based on Rotten Toma-
toes’ crowd-sourced similarity; (2) film to actor edges, show-
ing who starred in what; (3) film to director, showing who
directed what.

Demonstration Scenario.
Our analyst Bernadette wants to find co-directors who

have starred the same actor in two films. She begins speci-
fying her query in very general terms from a blank canvas.
She right-clicks the background, opening a tray with each
type of node. She picks a director node, she repeats this
to add another director, and again to add two films and an
actor. At this point her query contains just nodes, she must
still add the edges connecting them. She attaches the direc-
tor to the films and the films to the actor (see Figure 2-1),
by clicking and dragging from one node to the other (one
pair at a time). Alternatively when adding nodes, she may
choose to add a neighbor to any existing node in the graph
through our background sampled neighborhood menu (Fig-
ures 3-2 and 3-3). This adds a new node and edge connecting
to the starting node.

She decides to add a feature condition to one of the nodes.
She wants at least one of the two films to have received good
reviews from the critics. She right clicks the top film in her
query, opening the feature selection dendrogram (shown in
Figure 5). She navigates the data-generated feature sum-
mary tree and selects “Well-rated” from the choices under
the “Critics’ Score” feature.

She clicks the search button. The results appear in the
results list, we here show only the first result (in Figure 4-2)
to save space. She likes the first result (in Figure 2-2) with
the Coen Brothers, The Big Lebowski, O’ Brother Where Art
Thou?, and John Goodman. Realizing that she enjoys the
work of the Coen brothers, she stars both director nodes and
O’ Brother Where Art Thou?, making them fixed values in

1A movie review website. http://www.rottentomatoes.com/

Figure 4: The interface for our demonstration shows a basic query for a film with at least one actor and one
director; results are shown on the right in real time. Queries are constructed in the open space (1) by placing
nodes and edges. The query results are shown in a list in (2). When a node-result is clicked, a summary of
feature conditions (2.1) is shown with a summary of that node’s attributes (2.2). In this example the film
must have a critics’ score of “Well-rated”.

2

1

3 ***

Figure 5: We visualize the nodes’ feature space using
a dendrogram view [10]. Hierarchical features can
be expanded to reveal subsequent levels (3). The
darker and thicker edges (2) are highlighted based
on the results from the current query. Starred nodes
(those whose value is fixed) highlight the node fea-
tures in blue.

the query. She performs the search again with these fixed
nodes. The query is now looking for any actor cast by the
Coen brothers that was in O’ Brother Where Art Thou?
and any other Coen film. She receives the result, in Figure
2-3, showing George Clooney in Intolerable Cruelty. At any
time she can remove the fixed nodes to return to a more
abstract query.

Bernadette is curious if there are any movies from the 90’s
that fit her query. She right clicks the top film, reopening the
feature selection dendrogram (Figure 5). She clicks 1990 and
fetches new results. Visage allows her to quickly construct
and iterate her queries.

3. VISAGE OVERVIEW
The Visage interface is comprised of a force-directed

query visualization (Figure 4), a context menu that summa-
rizes the node’s feature conditions (Figure 4-2.1), a right-
click, context-menu that summarizes features (Figure 4-2.2
in blue), a feature exploration pop-up panel (Figure 5), and

a panel with a list of the current query results (Figure 4-
2). As the analyst constructs their query, partial results are
fetched in the background. User-selected nodes have a blue
border and display a context menu (O Brother, Where Art
Thou? in Figure 4-2).

If the analyst has added any feature conditions to the
query, they will appear in green when a result node is se-
lected (in Figure 4-2.1 the analyst has chosen only Well-
Rated films). When a result is selected, a summary of the
current node’s features is shown in blue. If a particular node
value from the data has been starred, its value in the query is
fixed and can take only that specific value during the query-
ing. Starred nodes have a golden star in the upper right and
an additional context menu that reminds the user that the
film is starred.

Adding new nodes is streamlined via our node tray, which
is brought up by clicking the “+” icon on an existing node
or right clicking on the background (see Figure 3.2). This
menu displays the types of nodes that, if added, guarantee
at least one match in the underlying network. The bars
and percentages show the breakdown of neighbor types for
the selected node. Each node shows a pin, a star and a
magnifying glass when moused over. The pin spatially pins
the node and the star allows users to keep it constant in the
query. The magnifying glass opens the node search menu, in
Figure 3.1, which allows users to search for particular nodes
via text. Users can quickly and easily add known values and
pin them; facilitating QBE-like query construction.

VISAGE Querying Language. Our demonstration of
Visage will show the audience how to form graph queries,
where the nodes can be as abstract as a wildcard (denoted
as a“?” in the node type menu) or as constrained as taking a
single value. Currently we support continuous, discrete, and
categorical attributes; however, we do not support queries
whose results are purely numeric as opposed to a collection
of subgraphs.

Feature Guidance. Visage visualizes a summary of the
current results’ features by showing different branch thick-
nesses in the feature dendrogram (Figure 5.2). With knowl-
edge of different attributes, analysts are better able to un-
derstand how the results’ features are distributed.

Figure 6: Visage utilizes a client-server architec-
ture, where the client renders the user-interface
in-browser (via javascript and HTML). The server
is a lightweight python server which wraps graph
databases (Neo4j, RDF; and potentially others).
The metadata extractor creates summarization
statistics for autocomplete.

Parsing A Graph Query. When seeking subgraph
matches, if the starting node has very few matches in the
graph, the search space is reduced and fewer comparisons
are needed. Because the specificity of node feature condi-
tions can vary from completely abstract (like a wildcard) to
a single specific node, we have designed Visage to partition
each query into a series of subqueries. We rank the nodes by
the number and severity of their conditions. Starred nodes
are parsed into subqueries first as their lookup is essentially
constant time. Visage then ranks the remaining nodes by
number of conditions. The entire parsing requires only a few
milliseconds. For databases with strong query-optimization
or those which do not support subqueries, this step can be
skipped via a configuration done once before running Vis-
age.

Implementation. Visage uses a client-server architecture
(Figure 6) which separates the user-facing, interactive vi-
sualization (client) from the stored graph and a database
management system (DBMS) to process it (server). The
server utilizes modules to interact with multiple graph
DBMSs, making Visage flexible across graph DBMSs. Vis-
age presently can handle queries that map into a sub-
set of Cypher (the querying language for Neo4j DBMS
[6]). Additionally, it can also map queries into a subset
of SPARQL, with full support in the near future. Visage’s
web client (Javascript and D3 [3]) and server (Python) can
run smoothly on the same commodity computer, returning
results like Figure 4 in less than a second (e.g., we developed
Visage on a machine with Intel i5-4670K 3.65GHz CPU and
16GB RAM). Optionally, for larger graphs, the server may
be run on a separate, more powerful machine.

4. CONCLUSION
We present Visage, an interactive visual graph query-

ing approach that empowers analysts to construct expressive
queries, without writing complex code. Visage allows the
user to work gradually from abstract to specific example-
driven queries through novel interaction techniques like
graph-autocomplete that helps prevent over-specification.
We will demonstrate and highlight Visage’s features using

a few usage scenarios on the popular Rotten Tomatoes film-
actor-director graph, and we will invite our audience to try
out Visage and freely experiment with their own queries.

5. ACKNOWLEDGMENTS
This research has been supported in part by NSF IGERT

grant 1258425, NSF grants IIS-1563816, TWC-1526254, and
IIS-1217559.

6. REFERENCES
[1] C. Ahlberg, C. Williamson, and B. Shneiderman.

Dynamic queries for information exploration: An
implementation and evaluation. In Proceedings of the
ACM SIGCHI Conference on Human factors in
Computing Systems (CHI), pages 619–626, 1992.

[2] S. S. Bhowmick, B. Choi, and S. Zhou. Vogue:
Towards a visual interaction-aware graph query
processing framework. In Proceedings of the Biennial
Conference on Innovative Data Systems Research
(CIDR), 2013.

[3] M. Bostock, V. Ogievetsky, and J. Heer. D3:
Data-driven documents. IEEE Trans. Visualization &
Comp. Graphics (Proc. InfoVis), 2011.

[4] N. Cao, Y.-R. Lin, L. Li, and H. Tong. g-miner:
Interactive visual group mining on multivariate
graphs. In Proceedings of the 33rd Annual ACM
Conference on Human Factors in Computing Systems,
CHI ’15. ACM, 2015.

[5] D. H. Chau, C. Faloutsos, H. Tong, J. I. Hong,
B. Gallagher, and T. Eliassi-Rad. Graphite: A visual
query system for large graphs. In Proceedings of the
IEEE International Conference on Data Mining
(ICDM), pages 963–966, 2008.

[6] D. Montag. Understanding neo4j scalability. Technical
report, Neo Technology, January 2013.

[7] S. Pandit, D. H. Chau, S. Wang, and C. Faloutsos.
Netprobe: a fast and scalable system for fraud
detection in online auction networks. In Proceedings of
the 16th international conference on World Wide Web,
pages 201–210. ACM, 2007.

[8] R. Pienta, A. Tamersoy, A. Endert, S. Navathe,
H. Tong, and D. H. Chau. Visage: Interactive visual
graph querying. In Proceedings of the International
Working Conference on Advanced Visual Interfaces,
AVI ’16, pages 272–279. ACM, 2016.

[9] R. Pienta, A. Tamersoy, H. Tong, and D. H. Chau.
Mage: Matching approximate patterns in
richly-attributed graphs. In IEEE International
Conference on Big Data (BigData), 2014.

[10] A. J. Saldanha. Java treeview-extensible visualization
of microarray data. Bioinformatics, 20(17):3246–3248,
2004.

[11] A. Tamersoy, E. Khalil, B. Xie, S. L. Lenkey, B. R.
Routledge, D. H. Chau, and S. B. Navathe. Large-scale
insider trading analysis: patterns and discoveries.
Social Network Analysis and Mining, 4(1):1–17, 2014.

[12] P. C. Wong, D. Haglin, D. Gillen, D. Chavarria,
V. Castellana, C. Joslyn, A. Chappell, and S. Zhang.
A visual analytics paradigm enabling trillion-edge
graph exploration. In Proc. LDAV. IEEE, 2015.

[13] M. M. Zloof. Query-by-example: A data base
language. IBM Systems Journal, 16(4):324–343, 1977.

