Augmenting Coding: Augmented
Reality for Learning Programming

Nathan Dass
College of Computing
Georgia Tech
ndass6@gatech.edu

Duen Horng (Polo) Chau
College of Computing
Georgia Tech
polo@gatech.edu

Joonyoung Kim
College of Computing
Georgia Tech
jkim936@gatech.edu

Sam Ford

College of Computing
Georgia Tech
sford100@gatech.edu

Sudeep Agarwal
College of Computing
Georgia Tech
sagarwal88@gatech.edu

Permission to make digital or hard copies of part or all of this work for personal
or classroom use is granted without fee provided that copies are not made or
distributed for profit or commercial advantage and that copies bear this notice
and the full citation on the first page. Copyrights for third-party components
of this work must be honored. For all other uses, contact the Owner/Author.
ChineseCHI '18, April 21-22, 2018, Montreal, QC, Canada

(©2018 Copyright is held by the owner/author(s).

ACM ISBN 978-1-4503-6508-6/18/04.
https://doi.org/10.1145/3202667.3202695

Abstract

Augmented reality (AR) is breaking into every industry
and is finding a home in many unique and novel
applications, due in part to its ability to engage users and
their physical surroundings in potentially immersive
means. We present our early investigation into whether
these qualities of AR may be leveraged to help people
learn coding more easily and with more fun. Using a
within-subjects design with 12 participants, our pilot
study evaluated two interactive AR coding environments:
(1) head-mounted AR with Microsoft HoloLens, (2)
mobile AR with ARKit on an iPhone; together with a
conventional 2D touch interface using Swift Playground
on an iPad as baseline. Participants enjoyed using mobile
AR the most, and they also completed programming tasks
the fastest when using it. Our current results suggest AR
may have potential in enhancing beginners’ learning
experience for coding, especially for tasks that are more
interactive and benefit from visual feedback.

Author Keywords
Augmented reality, teaching, HoloLens, ARKit

ACM Classification Keywords

H.5.m [Information interfaces and presentation (e.g.,
HCI)]: Mixed / augmented reality

a. Head-mounted AR
(Microsoft HoloLens)

b. Mobile AR
(Apple ARKit)

iﬁ

2

c. Conventional 2D

touch interface
(Swift Playground on iPad)

Figure 1: (a-b) A user working
on the path-finding task on two
interactive AR coding
environments; and (c) a
conventional 2D touch interface.
The user directs an avatar to
navigate from the top right
corner of a virtual game board to
the goal in the bottom left, along
a path coded by the user.

Introduction

The teaching of programming languages has become
increasingly prevalent in curricula around the world.
Coding has traditionally been taught in two dimensional
environments. Recent improvements in immersive
technologies such as virtual and augmented reality (AR)
[1], however, have opened the door to more dynamic
platforms for teaching how to code. This enables richer
and more engaging learning experiences which allows
learners to perceive and interact with content in a more
natural way. While the novel and unfamiliar nature of AR
environments results in users needing more time to adapt,
the dynamic and interactive nature of AR helps improve
performance in certain tasks [3]. There is also increasing
evidence that supports AR'’s positive influences in
education. For example, a recent study showed that AR
technology promoted positive attitudes among university
students towards science laboratories and helped them
develop better laboratory skills [2].

We present our preliminary findings of testing augmented
reality as a viable, novel platform for learning how to
code. We focus on two interactive AR coding
environments, as shown in Figure 1:

1. Head-mounted AR, using Microsoft HoloLens
2. Mobile AR, using Apple’'s ARKit on iPhone

We conducted a pilot study with 12 participants, using a
within-subjects design to quantitatively and qualitatively
evaluate the environments, where participants directed
avatars to navigate virtual worlds using program
commands, via spatial perception and interactions.

Code Learning Platform
To compare the performance of the two AR environments,
we built a unified interactive code learning platform built

with holograms. We drew design inspiration from Apple's
Swift Playground. For example, they share the common
objective of guiding an avatar to a goal (see Figure 1) on
a 3D game board.

Implementation For front-end holographic designs, we
used Unity3D, and for back-end game processing logic, we
used C# and Swift, which were compatible with the
HoloLens and ARKIit, respectively.

Interface Design When a user selects a code block
from the Code Blocks panel, that code block is added to
the Program panel, which maintains the list of code
blocks that the user selects. When the user adds code
blocks to the program, orange arrows are added on the
board which indicate the path that the avatar would
follow if the current program was executed. The user
executes the code by tapping on the Run Program button.

User Study Design

Our main objective at this stage of research was to learn
about the two AR environments’ potential in helping
people learn to code, and how they compare qualitatively
and quantitatively. However, we were also curious about
how AR would compare with conventional “non-AR" 2D
environments, such as Swift Playground. Thus, we
decided to use a within-subjects design with three main
conditions for completing tasks: head-mounted AR,
mobile AR, and Swift Playground.

Participants We recruited 12 participants, aged 18 to
23, from our institution through advertisements. 3 data
points had to be discarded due to technical difficulties
during the study. Two participants were female and the
rest were male. All participants were screened to ensure
they had minimal coding knowledge. Each study lasted for
90 minutes. The participants were paid $15 for their time.

<=

i
¥

="

1. Path-finding

3. Debugging

Figure 2: The three tasks each
participant completes: (1) Path
finding, (2) Hilbert, and (3)
Debugging. Only one variation of
each task is shown. Dark yellow
box is the avatar's starting
position; red box is the goal. The
red " X" mark in (3) indicates the
wrong path segment that the
participant must fix.

Experimental Design We used the same room and
identical lighting for all conditions. Each participant
completed a set of three tasks in one condition, before
moving to the next condition. The order of conditions was
counterbalanced. We used three task sets, each containing
three tasks with varying difficulty (Figure 2), to ensure
that participants would not remember their solutions
between sets (i.e., each task has three variations).

Procedure Before using each device, the participants
would watch a usage demonstration given by the
experimenter. Additional tutorial videos were provided for
HoloLens. The participants would then try out the devices
and familiarize themselves with the interaction gestures.
Participants were given 8 minutes to perform each task
during which we recorded audio, video, and time taken. If
a participant failed to complete the task within the
allotted time, the experimenter marked the task as a
failure, and recorded 8 minutes as the task completion
time. Participants completed an exit questionnaire asking
for their subjective feedback, such as the tools’
immersiveness, using a Likert scale (Figure 3).

Tasks The first task was path finding (Fig 2.1), where
the participant would code a program that would direct
an avatar to follow a path (in blue) to reach a destination
(red), on a 6x6 game board with a few obstacles on it.
The second task (Fig 2.2) also involved tracing a path,
but a much more complex one based on the Hilbert curve,
on a 4x4 grid. Due to the large number of turns in a
smaller space, the Hilbert task required the participant to
orient the avatar carefully at every step to complete the
task. The third task (Fig 2.3) asked the participants to
debug pre-written code that did not lead to a desired
destination, by removing one command to fix the path.
We designed this task to study how AR may help
participants visualize and correct coding errors.

User Study Results for head-mounted AR,
, & conventional 2D touch interface

Average Likert Score
(longer is better)

Average Task Times (s)
(shorter is better)

Immersive L
Hilbert [98.45 & — r

92

228.28 —_— 7 a—
Ease of debug [ei08
5.83
145.44
Ease of [

Path finding i 556) 7
planning 533

1 79.86

Debugging [&=— 2854

Likeability 22

Ease of use 8

| kel 5.33

0 400 0 7

Figure 3: Average task completion times and Likert scores for
each platform. Mobile AR is statistically significantly faster
across all tasks. Error bars represent one standard deviation.

Our hypothesis was that mobile AR would achieve the
shortest task completion times since participants would
use mobile device touch gestures that they might be
accustomed to. Task completion time was our dependent
measure and it could be affected by: (1) interaction
environment: AR (head-mounted or mobile), or
conventional 2D touch interface; and (2) usage order: the
order that the participant used each interaction device.
Using a Latin square design, we created 6 randomly
assigned participant groups.

Preliminary Results

Task Completion Time The task completion times
were analyzed using a mixed model analysis of variance
with fixed effects for interaction environment and usage
order, and a random effect for participants. The only
statistically significant effect was interaction environment,
suggesting successful counterbalancing of interaction

environment order. The interaction environment had a
statistically significant effect on the Hilbert times (Fy6 =
17.210, p = 0.001), and path finding times (Fy ¢ =
12.336, p = 0.004), but not for debugging times (Fr ¢ =
1.213, p = 0.347). The space-filling nature of the Hilbert
path leads to a high number of turns; the Hilbert tasks
took the longest time to complete (see Fig. 3).
Debugging, which only involved removing a single
command, was the quickest to complete.

Mobile AR was the fastest environment for all tasks, and
head-mounted AR the slowest, yielding a completion time
around 3 times slower than mobile AR for Hilbert and
path finding tasks. This is not surprising because Mobile
AR provides a new visualization environment with similar
gesture interactions while the HoloLens presents an
entirely new set of gesture interactions.

As mentioned before, our main goal was to compare AR
environments; we decided to also include a touch interface
(Swift Playground) in our study so that we could also
study the potential differences in usability and capability
between AR and “non-AR” environments. We found that
the off-the-shelf Swift Playground was slower than mobile
AR; this was largely due to some participants choosing to
type in commands at times, instead of tapping command
buttons; and the visual feedback offered by our AR coding
environment, which was unavailable in Swift Playground.

Ease of Use Although most participants thought the
head-mounted AR was the most immersive, they found it
most difficult to interact with and also mentioned that the
HoloLens gestures often required several tries before they
got recognized. A few participants also found the
HoloLens disorienting and felt dizzy after prolonged use
unlike in other platforms. The participants found mobile
AR to be the most enjoyable.

Visual Feedback Participants reported that the two
versions of our code learning platform were in general
immersive and intuitive to use. Most participants also
agreed that the real-time visual feedback provided by the
augmented reality environment enabled them to code and
plan their next move better in completing the given task.

Ongoing Work

We presented our preliminary investigation into using
augmented reality for coding education. Both the
head-mounted and mobile AR platforms show positive
signs of potential. We plan to further evaluate the AR
platforms with more complex tasks that require fine motor
movements or audio-visual perception in a larger
participants pool. We will also add tasks that include
more complex coding concepts to assess the effect of
augmented reality environments in aiding the learning of
such topics.

REFERENCES
1. Murat Akcayir and Gokge Akgayir. 2017. Advantages
and challenges associated with augmented reality for
education: A systematic review of the literature.
Educational Research Review 20 (2017), 1-11.

2. Murat Akgayir, Gokce Akcayir, Hiiseyin Mira¢ Pektas,
and Mehmet Akif Ocak. 2016. Augmented reality in
science laboratories: The effects of augmented reality
on university students’ laboratory skills and attitudes
toward science laboratories. Computers in Human
Behavior 57 (2016), 334-342.

3. Benjamin Bach, Ronell Sicat, Johanna Beyer, Maxime
Cordeil, and Hanspeter Pfister. 2018. The Hologram
in My Hand: How Effective is Interactive Exploration
of 3D Visualizations in Immersive Tangible
Augmented Reality? TVCG 24, 1 (2018), 457-467.

	Introduction
	Code Learning Platform
	User Study Design
	Preliminary Results
	Ongoing Work
	REFERENCES

