
AR-CF: Augmenting Virtual Users and Items in Collaborative

Filtering for Addressing Cold-Start Problems

Dong-Kyu Chae
Georgia Institute of Technology

Atlanta, USA

cdongkyu3@gatech.edu

Jihoo Kim
Hanyang University

Seoul, South Korea

datartist@hanyang.ac.kr

Duen Horng Chau
Georgia Institute of Technology

Atlanta, USA

polo@gatech.edu

Sang-Wook Kim∗

Hanyang University

Seoul, South Korea

wook@hanyang.ac.kr

ABSTRACT

Cold-start problems are arguably the biggest challenges faced by

collaborative filtering (CF) used in recommender systems. When

few ratings are available, CF models typically fail to provide satis-

factory recommendations for cold-start users or to display cold-start

items on users’ top-N recommendation lists. Data imputation has

been a popular choice to deal with such problems in the context

of CF, filling empty ratings with inferred scores. Different from

(and complementary to) data imputation, this paper presents AR-

CF, which stands for Augmented Reality CF, a novel framework

for addressing the cold-start problems by generating virtual, but

plausible neighbors for cold-start users or items and augmenting

them to the rating matrix as additional information for CF models.

Notably, AR-CF not only directly tackles the cold-start problems,

but is also effective in improving overall recommendation qualities.

Via extensive experiments on real-world datasets, AR-CF is shown

to (1) significantly improve the accuracy of recommendation for

cold-start users, (2) provide a meaningful number of the cold-start

items to display in top-N lists of users, and (3) achieve the best

accuracy as well in the basic top-N recommendations, all of which

are compared with recent state-of-the-art methods.

CCS CONCEPTS

• Information systems→ Recommender systems.

KEYWORDS

Recommender systems, collaborative filtering, cold-start problems,

data sparsity, generative adversarial nets

ACM Reference Format:

Dong-Kyu Chae, Jihoo Kim, Duen Horng Chau, and Sang-Wook Kim. 2020.

AR-CF: Augmenting Virtual Users and Items in Collaborative Filtering for

∗Corresponding author

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

SIGIR ’20, July 25–30, 2020, Virtual Event, China

© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-8016-4/20/07. . . $15.00
https://doi.org/10.1145/3397271.3401038

Addressing Cold-Start Problems. In Proceedings of the 43rd International

ACM SIGIR Conference on Research and Development in Information Retrieval

(SIGIR ’20), July 25–30, 2020, Virtual Event, China. ACM, New York, NY, USA,

10 pages. https://doi.org/10.1145/3397271.3401038

1 INTRODUCTION

Collaborative filtering (CF) is one of the most successful methods

in recommender systems [6, 8]. It aims at providing a personalized

top-N list of items to a target user based on user-item interaction

data [3], usually represented by a form of a rating matrix where

a row indicates a user, a column indicates an item, and a value

does a rating given by a user to an item, mostly in a specific range

(e.g., [1, 5]) [4, 5]. In the literature, a large number of CF models

have been studied, where popular examples include those based on

matrix factorization (MF) [10, 18] or deep neural networks (DNN)

[3, 4, 32, 36]. Despite their success, however, CF models tend to

become less effective when facing the so-called cold-start problems

[16, 28] due to the sparsity of the rating matrix. More specifically,

it is difficult for CF models to understand the preferences of those

users having insufficient ratings, thereby resulting in unsatisfactory

recommendation to them (a.k.a. cold-start user problem). Similarly,

CF models cannot fully capture the latent features of items that

have insufficient ratings, thereby having difficulty in recommending

those items to any user’s top-N list (a.k.a. cold-start item problem).

To highlight these two types of cold-start problems, we per-

formed a preliminary experiment with AutoRec [32] on the Movie-

lens 1M dataset and tested its performance on the cold-start users

and items w.r.t. top-20 recommendation. The results are shown in

Figure 1. Figure 1(a) shows the accuracy (in terms of precision) of

recommendation to the cold-start users is significantly lower than

that of recommendation to the users with sufficient ratings avail-

able (i.e., warm-start users). Figure 1(b) shows that the warm-start

items are very frequently recommended (denoted as exposure ratio)

and many of them are actually chosen (denoted as hit ratio) by

users, but the cold-start items are rarely recommended nor chosen

by users.

To address the cold-start problems, most work so far have tried to

exploit additional information such as users’ demographic data [2]

or social/trust networks [28], and auxiliary content of items such as

review text [40] or images [13]. However, their methods are appli-

cable only when such additional data is available [7]. Some studies

employed human crowd workers in a crowdsourcing platform to

Session 7C: Neural Collaborative Filtering 2 SIGIR ’20, July 25–30, 2020, Virtual Event, China

1251

0.00

0.04

0.08

0.12

0.16

Pr
ec

isi
on

@
20

Cold-start users

Warm-start users

User groups w.r.t. the number of ratings

(a) Cold-start user problem

0.00

0.20

0.40

0.60
exposure ratio
hit ratio

Item groups w.r.t. the number of ratings

Cold-start items

Warm-start items

(b) Cold-start item problem

Figure 1: Illustration of cold-start problems.

find relevant neighbors of the cold-start items [16] or developed

frameworks based on active learning [34] that asks target users to

provide more ratings. However, such human-machine interactive

systems are known to be very time-consuming and costly to de-

velop [16]. Our focus is on pure CF, i.e., a recommendation task

given only with the rating matrix without requiring any additional

information and the human-in-loop framework. In this context, data

imputation has been the most popular choice in dealing with the

cold-start problems of CF [7, 17, 30, 31, 41]. Its main idea is to re-

solve data sparsity in the rating matrix by inferring the values for

missing ratings and imputing them to the rating matrix [20, 21, 23].

However, it is still not tailored to tackling directly the cold-start

problems for users and items; rather it mainly reduces the overall

sparsity of a dataset. In our comprehensive experiments (in Section

5), data imputation successfully improved the overall accuracy of

recommendation but was not that much effective to alleviate the

cold-start problems.

In this paper, we propose a novel CF framework that directly

tackles the cold-start problems and is effective as well in improving the

overall accuracy of recommendation. Different from existing imputa-

tion strategies that fill in the missing cells inside the rating matrix,

our main idea is to generate virtual, but plausible users and items

and then to augment the rating matrix with them as additional rows

(i.e., users) and columns (i.e., items). More specifically, our AR-CF

framework, which stands for Augmented Reality CF, consists of the

following two steps: AR-step and CF-step. In the AR-step, we train

four different Conditional Generative Adversarial Nets (CGANs) [26],

where two CGANs collaborate with each other to generate virtual

users (i.e., user row vectors); similarly, the other two CGANs focus

on generating virtual items (i.e., item column vectors). Since user

(resp. item) data is very sparse, which is quite different from im-

age data typically considered by GANs [12, 29], we propose to use

two CGANs where one focuses on learning rating data distribution

and the other capturing missingness distribution. Then, we condi-

tion the trained CGANs with the cold-start users (resp. items) to

generate their virtual “neighbors”, and augment the rating matrix

with them. In the CF-step, we train any existing CF model with

the augmented rating matrix rather than the original one and then

infer each user’s (including the generated virtual users) predicted

scores on her unrated items (including the generated virtual items).

Finally, we refine each user’s (resp. each item’s) rating predictions

by aggregating their virtual neighbors’ inferred ratings and produce

recommendation based on the refined ratings.

Contributions. To the best of our knowledge, our work is the

first attempt to exploit GANs to generate virtual, but realistic neigh-

bors of users and items to alleviate the cold-start problems in the

context of pure CF. Notably, our framework presents the following

important advantages: (1) from the viewpoint of CF models, the

plausible and similar neighbors of the cold-start users and items

can be seen as additional training data that could be helpful in bet-

ter understanding the cold-start users and items. Thanks to these

virtual neighbors, CF models can provide the cold-start users with

higher-quality recommendations, and allow cold-start items to be

more frequently recommended to users. (2) Not only for cold-start

users and items, our GANs can also generate neighbors for any

users and items, which could help improve the overall accuracy of

CF. (3) Once our CGANs are completely trained, they can provide

the desired number of virtual users and items to create a richer rat-

ing matrix, which is beneficial for any CF models, without requiring

any cost or human workers. (4) Our framework is compatible with

existing imputation methods, working on top of them. This is a very

important property since the data imputation methods have been

very successful in improving the accuracy of CF models so our ideas

and imputation methods are synergistic, amplifying each other’s

positive effects. (5) Our experimental results on four real-world

datasets demonstrate the benefits of AR-CF: thanks to the gener-

ated virtual neighbors, CF models provide the cold-start users with

more-accurate recommendations and enable the cold-start items

to be recommended more frequently to appropriate users. More-

over, our framework generally improves the overall accuracy of

recommendation in existing state-of-the-art top-N recommenders.

Organization. The remainder of this paper is organized as fol-

lows. In Sections 2 and 3, we present the details of the AR-step

and the CF-step of our AR-CF, respectively. In Section 4, we briefly

review the current literature related to our work. In Section 5, we

show the experimental settings and the results of our extensive

experiments. In Section 6, we finally summarize and conclude our

work. The notations frequently used throughout this paper are

summarized in Table 1.

2 AR-STEP

This section introduces how we generate virtual users and items

to be augmented into R based on the Generative Adversarial Nets

(GAN) [12], a framework to train generative models with com-

plicated, high-dimensional real-world data such as images. GAN

consists of two models competing with each other: one is a gen-

erative model (shortly, G) and the other is a discriminative model

(shortly, D). During learning, G tries to generate realistic data and

passes it to D; D evaluates the possibility that the data came from

the ground truth rather than from G [7, 9]. Formally, the objective

function of G and D, V (D,G), is defined as follows:

min
G
max
D

V (D,G) = Ex∼pdata (x)[lnD(x)]−Ez∼pz (z)[lnD(G(z))] (1)

where x is a ground-truth data from the data distribution pdata
and z is a low-dimensional latent vector sampled from known prior

pz . G(z) is a synthetic data from the generator distribution pд [7].
Ideally, the Jensen-Shannon divergence between pdata and pд is
minimized as a result of optimizing Eq. (1) when z ∼ pz [11, 12].

Session 7C: Neural Collaborative Filtering 2 SIGIR ’20, July 25–30, 2020, Virtual Event, China

1252

Table 1: Notations

Notation Description

R An original rating matrix

R
+ An augmented rating matrix

ru, ri Rating vectors of user u and item i
mu, mi Missingness vectors of user u and item i
cu, ci Condition vectors of user u and item i
G, D A generator and a discriminator in the GAN framework

GU , DU G and D learning rating distribution w.r.t. users

GI , DI G and D learning rating distribution w.r.t. items

Gm
U
, Dm

U
G and D learning missingness distribution w.r.t. users

Gm
I
, Dm

I
G and D learning missingness distribution w.r.t. items

x ‖ y Concatenation of two vectors x and y

x � y Element-wise multiplication of two vectors x and y

Hence, the completely trained G is expected to generate realistic

data.

2.1 Model Description and Training

Based on the original GAN aforementioned, we build our framework

with taking the following properties into consideration:

• Cold-start awareness (P1): One of our important goals is

to alleviate the problems with the cold-start users and items.

Therefore, it would be desirable for our model to be able to

generate realistic neighbors of specific (i.e., cold-start) users

and items in the original dataset if they are given to the

model, rather than just randomly generating without any

control under which users and items are generated.

• Sparsity awareness (P2): Unlike the image data considered

by the original GAN, which is represented as a dense vector,

the users and items in a recommender system is typically

a sparse vector having a large number of missing elements

inside. This is because most of users typically rate only a

small number of chosen items. In light of this fact, GAN

in our framework should be able to consider such sparsity

nature (i.e., missingness) when generating users and items.

Regarding property P1, we build our framework on the basis of

Conditional GAN (CGAN) [26]: this extension to the original GAN

allows G to produce data related to a given specific condition by

feeding G a desired condition as an additional input in conjunction

with the random noise input z. Thus, its objective function is:

V (D,G) = Ex∼pdata (x)[lnD(x|c)] − Ez∼pz (z)[lnD(G(z|c))], (2)

where c corresponds to a condition vector such as a one-hot vector

of a specific class label (e.g., “cats” or “dogs” in image data) [19].

For property P2, we build a pair of collaborative CGANs to generate

users, where one learns the rating data distribution and the other

learns the missingness distribution. Also, we train another pair of

CGANs to generate items in the same way.

Figure 2(a) describes the training of two pairs of CGANs where

the above two CGANs and the rest two CGANs focus on users and

items, respectively. For the sake of simplicity, this subsectionmainly

elaborates the details of our models focusing on users, and then

will briefly explain how the user-based formulations change when

focusing on items. Formally, based on Eq. (2), the objective function

of our two CGANs for users, denoted as V (DU,D
m
U
,GU,G

m
U
),

can be written as:

V (DU,D
m
U
,GU,G

m
U
)

�
1

|BU |

(∑
u ∈BU

(
lnDU(ru ‖ cu) + lnD

m
U
(mu ‖ cu)

)
(3)

−
∑

u ∈BU

(
ln(DU(GU(zU ‖ cu) � mu) + ln(D

m
U
(Gm

U
(zU ‖ cu)))

))

where zU denotes a random noise vector for users, ru denotes a

real rating vector of a user u, cu denotes u’s condition vector, and
BU does a minibatch of users to be conditioned. Most importantly,

mu corresponds to u’s real missingness vector specifying whether a
rating of u on item i is observed (eui = 1) or missing (eui = 0). Fed
with the same input zU ||cu, GU and Gm

U
generate u’s synthetic

rating and missingness vectors, denoted as r̂u and m̂u, respectively.

Likewise, conditioned by the user-specific condition cu, both DU

and Dm
U
are trained to discriminate u’s real rating vector ru and

real missingness vector mu from the fake data r̂u and m̂u, respec-

tively. All the generators and discriminators in our CGANs are

implemented by DNN where the stochastic gradient descent (SGD)

with minibatch and the back-propagation algorithm are employed

to train them. Algorithm 1 shows the adversarial process among

the generators GU and Gm
U
and the discriminators DU and Dm

U
.

As a result of the training, we expect GU and Gm
U
would capture

the true distribution of ratings and missingness of users on items.

Another point worth mentioning is that, during the training of

the two CGANs simultaneously, we multiply u’s true missingness
vectormu with GU ’s output by GU(zU ||cu) �mu, as shown in Eq.

(3). The reason for this multiplication (i.e., “masking” GU ’s output)

is to deal with the sparse nature of rating vectors that GU tries to

mimic. By doing so, GU ’s output only on the observed ratings can

contribute to the entire learning process of GAN and the gradients

from the unobserved ratings are safely ignored. Such a masking

scheme has been commonly employed by most of GANs for the

data with missing values (e.g., in [5], [7], and [44]).

Until now, we have described our CGANs for learning the rating

distribution and missingness distribution of users. We note that the

aforementioned formulations can be easily extended to learning

those of items. Similarly, we formulate the objective function of our

CGANs for items, V (DI,D
m
I
,GI,G

m
I
), as follows:

1

|BI |

(∑
i ∈BI

(
lnDI(ri ‖ ci) + lnD

m
I
(mi ‖ ci)

)
(4)

−
∑
i ∈BI

(
ln(DI(GI(zI ‖ ci) � mi) + ln(D

m
I
(Gm

I
(zI ‖ ci)))

))
,

where zI denotes a random noise vector for items, BI denotes a

minibatch of items, ci denotes the condition vector that specifies

an item i , and ri/mi does i’s true rating/missingness vector.

2.2 Generation and Augmentation

After the training of our CGANs is completed, we now ready to

generate virtual neighbors of the real users and items in a dataset.

Figure 2(b) describes the overview of the generation and augmenta-

tion process. As the first step, we need to choose whose neighbors

will be generated among the entire users and items. Formally, let

Session 7C: Neural Collaborative Filtering 2 SIGIR ’20, July 25–30, 2020, Virtual Event, China

1253

(a) Training of our CGANs (b) Generation and augmentation

real
fake

items

users

5 4 3 2
2 2
5 1 5
2 4 4

5 5
5 4 5 2 1
4 1 4 5

4 5 2
5 4 2

1 4 5

4
4

1 2 1

4 3
5 4

Figure 2: Overview of the AR-step. Two pairs of CGANs are trained, where the upper and the bottom pairs are tailored to

generating users and items, respectively. The generated users and items are augmented to the ratingmatrix as additional rows

and columns. Note that we do not consider interactions between the generated users and items.

Algorithm 1 LearnUserCGANs

Input: Rating matrix R

Output: GU and Gm
U

1: Initialize the model parameters of DU,D
m
U
,GU , and Gm

U
2: while not converged do

3: for G-step do (DU and Dm
U
are fixed here)

4: Sample minibatch of users BU
5: Generate fake rating vectors

{
r̂(u)

}
,∀u ∈ BU by GU

and fake missingness vectors
{
m̂(u)

}
,∀u ∈ BU by Gm

U

6: Update GU and Gm
U
by descending the stochastic gradi-

ents of V (DU,D
m
U
,GU,G

m
U
)

7: end for

8: for D-step do (GU and Gm
U
are fixed here)

9: Sample minibatch of users BU
10: Get their real rating vectors

{
r(u)

}
,∀u ∈ BU and real

missingness vectors
{
m(u)

}
,∀u ∈ BU

11: Generate fake rating vectors
{
r̂(u)

}
,∀u ∈ BU by GU

and fake missingness vectors
{
m̂(u)

}
,∀u ∈ BU by Gm

U

12: Update DU and Dm
U
by ascending the stochastic gradi-

ents of V (DU,D
m
U
,GU,G

m
U
)

13: end for

14: end while

15: return GU and Gm
U

LU andLI be lists of users and items whose neighbors will be gen-

erated by the trained generators. Now, our question is who/what

will be included inLU /LI . Naturally, the cold-start users and items

that have a few ratings would be primarily considered. Meanwhile,

the normal users and items having relatively sufficient ratings need

to be considered as well since we also aim to improve entire users’

overall satisfaction with recommendations.

To this end, we define non-uniform probability distribution for

sampling over users and items as:

p(u) ∝
1

|Iu |
, p(i) ∝

1

|Ui |
, (5)

where Iu and Ui denote the sets of items rated by u and users

having rated i , respectively. In other words, the users/items having
less ratings available are more likely to be sampled and included in

LU /LI . We believe this approach makes our framework mainly

focus on the cold-start users and items while not completely ig-

noring normal users and items. We sample users and items with

replacement, hence the same users and items can be listed multiple

times. We denote δu and δi as pre-defined sizes of LU and LI

(i.e., the numbers of virtual users and items to be generated), and

the sampling is terminated when the numbers of users and items

sampled reach to δu and δi , respectively. The values of δu and δi
are chosen empirically; the impact of those hyper-parameters on

the performance will be further analyzed in Section 5.

After the sampling, for each useru inLU , we feed zU ||cu forGU
and Gm

U
to generate r̂u and m̂u. Owing to the random noise zU and

u’s specific condition cu, the generated r̂u is expected to contain the
predicted ratings on all the items thatu’s neighbor might have given
if she did exist. Likewise, we expect m̂u to contain the probability

that each item might have been used by u’s neighbor. Finally, we
complete the user generation bymaking r̂u as a sparse vector having

ratings only on the items on which the neighbor might be the most

likely to give ratings. This is done by (1) converting m̂u to zero-one

vector, denoted as m̄u, such that the top-k highest values in m̂u

become 1 and the rest 0, and (2) multiplying r̂u with m̄u. Generating

the virtual items can be performed in a very similar way with the

aforementioned process by using the generators GI and Gm
I
, and

we will skip its details for simplicity.

Here, the k value controls the number of ratings that the vir-

tual users and items will have. We empirically observed that both

too small and too large k values are not effective in improving

the accuracy of recommendations: if k is too small, the generated
neighbors would also have the cold-start problems, thereby not

that much helpful in understanding the real cold-start users and

items. In addition, the overall sparsity would become higher if such

sparse rows and columns are augmented in the rating matrix. In

contrast, if it is too large, the generated neighbors would not be

similar with the real cold-start users and items, so CF models may

Session 7C: Neural Collaborative Filtering 2 SIGIR ’20, July 25–30, 2020, Virtual Event, China

1254

items

users

5 4 4 3 3 2
1 2 3 3 2 4

2 5 3 1 4 5
5 2 4 5 5 4
5 2 3 5 5 5

5 4 5 5 2 1
4 4 1 4 3 5

2 4 3

2 5 4
1 2 1
5 4 4

5 2 3

4 5 3
5 4 2

items

users

5 3 4 4 3 2
1 2 4 2 2 3

2 5 4 1 5 5
4 2 4 5 4 4
5 1 5 4 5 4

5 4 5 5 2 1
4 3 1 4 4 5

4 4 5 2 2 1

4 5 4 3 2 2

1 4 4 2 2 5

item

user

u’s virtual
neighbors

SVD

Autorec

PMF

5 3 4 4 3 2

4 4 5 2 2 1

4 5 4 3 2 2

5 4 4 3 3 2

3 3 1 5 5 5 4
2 4 1 4 3 3 2

4 5 2 4 2 5 4
3 2 1 5 5 4 5

i’s virtual
neighbors

3 4 1 5 4 4 4

2 4 3

2 5 4
1 2 1
5 4 4

5 2 3

4 5 3
5 4 2

items

users

5 4 4 3 3 2
2 2 3 4 2 4

3 5 3 1 4 5
5 2 4 5 5 4
5 2 4 4 5 5

5 4 5 4 2 1
4 4 1 4 3 5

Figure 3: Illustration of the CF-step. Colored, and relatively small integers indicate the ratings predicted by CF. Bold-Italic

integers indicate the refined ratings. The similarities are computed based only on the original ratings (circled with dotted

lines), not those predicted nor refined.

have difficulty in learning the characteristics of the real cold-start

users and items based on their neighbors. As a compromise, we

empirically choose to set k as the average number of ratings of real
users when generating virtual users, and the average number of

ratings of real items when generating virtual items.

3 CF-STEP

Figure 31 presents the overview of this step. Firstly, we train an

arbitrary CF model by using the augmented rating matrix R+ as

training data, and then use the trainedmodel to infer the empty cells

in R+. Note that we now have the augmented rating matrix with

the unknown ratings being predicted, including not only the ratings

of real users on real items, but also those of real users on virtual

items, and those of virtual users on real items. We do not predict

the ratings of virtual users on virtual items since these ratings will

not be used to produce the final recommendation results.

Next, we refine the predicted ratings of real users by exploiting

their virtual neighbors’ ratings. The implication behind this idea is

similar to that of the traditional memory-based CF methods [37].

Since the virtual neighbors of a user (say, u) may have similar taste
to that of u and the ratings of those neighbors on each target item

(say, i) predicted by CF would be helpful in inferring u’s rating on
i more accurately. Similarly, u’s predicted ratings on the virtual

neighbors of i may also be beneficial to the inference since i and
its neighbors may share lots of similarities in users’ taste.

We first adjust the predicted ratings of real users by aggregating

their corresponding neighbors’ ratings, and then adjust those of

real items by aggregating their corresponding neighbors’ ratings.

However, we will mainly describe our idea with focusing on a real

user ‘u’ and a real item ‘i’ for simplicity. It can be easily generalized
to any real user and any real item. First, we collect u’s neighbors,
denoted as Vu , and compute the similarity between u and each

neighbor v inVu by using the Pearson correlation coefficient [37]

1Actually, all the generated and predicted ratings are with floating-point values. How-
ever, in Figures 2 and 3, we represent them with the integer values for simplicity.

below2:

wu ,v =

∑
t ∈Iu ,v

(rut − r̄u)(rvt − r̄v)
√∑

t ∈Iu ,v
(rut − r̄u)

2
√∑

t ∈Iu ,v
(rvt − r̄v)

2
, (6)

where Iu ,v indicates intersection, i.e., a set of items that both u and

v have rated, rui does user u’s rating to item i, and r̄u does the

average rating of u on the items included in Iu ,v . Then, u’s refined
rating on i is computed by the weighted average of u’s predicted
rating r̂ui and her neighbors’ ratings, as follows:

r̃ui = αU · r̂ui + (1 − αU) ·
∑

v ∈Vu

wu ,v · r̂vi (7)

where αU is a tunable parameter that controls the importance of

virtual users’ ratings in this refinement process. If αU=1 as an
extreme case, the above equation actually does not consider virtual

users’ ratings at all; if αU=0, it only relies on virtual users’ ratings,

ignoring the real user’s rating.

After adjusting the predicted ratings of all the real users, we

now focus on adjusting real items’ predicted ratings. Similarly, we

collect i’s neighbors, denoted as Pi , and then refine r̃ui again based
on the virtual items in Pi , as follows:

˜̃rui = αI · r̃ui + (1 − αI) ·
∑
p∈Pi

wi ,p · r̂up (8)

where αI controls the importance of virtual items’ ratings andwi ,p

denotes the similarity between real item i and each of i’s neighbors,
p. After adjusting all the real items’ predicted ratings, we finally
provide each real user with a subset of real items whose ratings

refined through the aforementioned processes are the highest.

4 RELATEDWORK

Data imputation has been the most successful technique to solve

the cold-start problems in the area of pure CF. Among many others,

Zero-Injection [17, 22] has shown the state-of-the-art performance.

2Other similarity metrics such as Cosine [37] can be applied here.

Session 7C: Neural Collaborative Filtering 2 SIGIR ’20, July 25–30, 2020, Virtual Event, China

1255

It carefully finds so-called uninteresting items that each user has

not rated yet but is unlikely to prefer even if recommended to

her. Then, it injects zero ratings to the identified uninteresting

items as her negative preferences. Very recently, several imputation

methods employ the generator in GAN as an imputation model for

missing data. Chae et al. [7] proposed Rating Augmentation GAN

(RAGAN) that aims at exploiting GAN to generate plausible ratings

to be imputed while resolving the inherent selection bias of the

rating data. Generative Adversarial Imputation Nets (GAIN) [44] and

MisGAN [24] are also well-designed data imputationmethods based

on GAN, even though their domain is not recommender systems.

They assume that the data is missing completely at random (MCAR)

[15, 35] and build their models on the basis of this philosophy.

Among the contents-based or the hybrid recommender systems,

AugCF [41] and RSGAN [45] are relevant to our work. In the AugCF

framework, G outputs the most plausible item for a given user and

a given class (e.g., like/dislike) with the help of side information

associated with the users and items, and D distinguishes whether

the generated item is fake or real. RSGAN aims at generating a

target user’s social friends who would be reliable and able to bring

better recommendation performance. In our future work, we plan

to extend our AR-CF to deal with various types of side information

and compare it with hybrid recommenders.

5 EVALUATION

This section reports and analyzes the results of our extensive ex-

periments, which are carefully designed to answer the following

key questions:

• Q1: Are the generated neighbors beneficial for resolving the

cold-start problems?

• Q2: How does AR-CF perform compared with the state-of-

the-arts for all users and items?

• Q3: How does AR-CF perform according to different values

of key hyper-parameters?

• Q4: How much do the generated users and items influence

the scalability of AR-CF?

5.1 Experimental Settings

5.1.1 Datasets. We used four real-world datasets: Movielens 100K,

Movielens 1M3, Watcha4, and CiaoDVD [38] datasets, whose de-

tailed statistics are summarized in Table 2. For each dataset, follow-

ing [14, 39], we chronologically split the ratings into two subsets:

the first 80% for training and the remaining 20% for testing 5. Among

the ratings in the test set, we considered the ratings of 4 and 5 as

our ground truth.

5.1.2 Implementation details. As mentioned, one of the most im-

portant advantages of AR-CF is that it can be performed on top of

any existing data imputation methods. Once an arbitrary imputa-

tion method produces the rating matrix with a specific amount of

missing cells imputed, which we denote by Ř, then we can simply

run AR-CF on Ř as if we run it on the original rating matrix R.

Since the data imputation methods have been very successful in

3https://grouplens.org/datasets/movielens/
4http://watcha.net
5However, since Watcha does not have the timestamp information, we split only its
ratings in a random manner.

Table 2: Dataset statistics

Datasets # users # items # ratings Sparsity

Movielens 100K 943 1,682 100,000 93.69%

Watcha 1,391 1,927 101,073 96.98%

Movielens 1M 6,039 3,883 1,000,209 95.72%

CiaoDVD 7,628 15,536 62,358 99.94%

improving the accuracy of CF models, our AR-CF can enjoy such

performance gains without requiring any modification. We are

aware of several successful imputation methods summarized in Sec-

tion 4. Among them, we chose Zero-Injection (ZI in short, hereafter)

and applied it to R before running AR-CF, since ZI is simple but

fast and has achieved state-of-the-art accuracy in the literature. It

is also less sensitive to its hyper-parameters [17, 22] and its code is

publicly available. However, we note any other imputation methods

can be applied here, and we remain AR-CF’s collaborating with

various imputation methods for our future work.

We performed the grid search to find the optimal values of hyper-

parameters in our AR-CF. For the generators and discriminators in

our four CGANs, we tested a different number of hidden layers with

{1, 2, 3, 4, 5} and a different number of hidden nodes per hidden

layer with {300, 400, 500, 600, 700}. We fixed the dimensionality of

the random noise vector z as 128. For training the CGANs, the size

of the minibatch was varied with {64, 128, 192, 256} and a learning

rate with {0.005, 0.001, 0.0005, 0.0001}. We chose the numbers of

virtual users and items, δU and δI , by using the ratio to the entire
number of real users (say,m) and real items (say, n) in a dataset,
and varied them with {0.25, 0.5, 0.75, 1.0, 1.5, 2.0}; if δU = 0.5, for
example, (int)m × 0.5 users will be generated. We also varied the

importance parameters, αU and αI , with {0, 0.2, 0.4, 0.6, 0.8, 1.0}.
We employed SVD [18] and AutoRec [32] as our CF models; we

tested AutoRec’s number of hidden layers with {1, 2, 3, 4} and its

number of hidden nodes per hidden layer with {200, 300, 400, 500};

we tested SVD’s number of latent factors with {20, 40, 60, 80, 100}.

For training the CF models, we used the size of the minibatch with

{64, 128, 256, 512} and the learning rate with {0.001, 0.0005, 0.0001}.

For all the CGANs and CF models, we fixed their L2 regularization

coefficients as 0.001. Following [7], we use a user’s (or, an item’s)

rating vector as user-specific (or, item-specific) condition.

5.1.3 Competitors. We employed (1) two widely-used baseline CF

methods of SVD [18] and AutoRec [32], (2) four CF methods based

on state-of-the-art data imputation algorithms of Zero-Injection (ZI)

[17], RAGAN [7], GAIN [44], andMisGAN [24], and (3) four state-of-

the-art top-N recommenders of PureSVD [10], CDAE [43], CFGAN

[5], and NGCF [42]. SVD is a standard MF-based model along with

user and item bias terms [18]. AutoRec is an Autoencoder-based,

non-linear latent factor model for CF. We already explained ZI,

RAGAN, GAIN, and MisGAN in Section 4. For these imputation

methods, we also employed SVD and AutoRec to provide the fi-

nal recommendations after they completed their own imputation

algorithms on R. PureSVD, CDAE (Collaborative De-noising Autoen-

coder), CFGAN, and NGCF (Neural Graph CF) are the state-of-the-

art recommender models based on SVD, Autoencoder, GAN, and

GCN (Graph Convolutional Networks) [1], respectively.

For each competing method, we tested various values for its

hyper-parameters (e.g., the numbers of hidden nodes and hidden

Session 7C: Neural Collaborative Filtering 2 SIGIR ’20, July 25–30, 2020, Virtual Event, China

1256

(b): Watcha(a): CiaoDVD (d): Movielens 100K(c): Movielens 1M

10% 20% 30% 40%10% 20% 30% 40% 10% 20% 30% 40%10% 20% 30% 40%

0.000

0.006

0.012

0.018

0.024

0

0.03

0.06

0.09

0.12

0

0.1

0.2

0.3

0.4

0.5

Ex
po

su
re

 ra
tio

 +
 H

it
ra

tio

0.000

0.005

0.010

0.015

0.020 exposure ratio hit ratio

Item groups w.r.t. the number of ratings

Figure 4: Exposure/hit ratio of cold-start items.

(b): Watcha (c): Movielens 1M (d): Movielens 100K(a): CiaoDVD

0.003

0.004

0.005

0.006 AutoRec ZI
AR-CF

10% 20% 30% 40%

Pr
ec

isi
on

@
20

0.03

0.05

0.07

0.09

10% 20% 30% 40%
0.02

0.03

0.04

0.05

0.06

0.07

10% 20% 30% 40%10% 20% 30% 40%
0.01

0.02

0.03

0.04

0.05
autorec

autorec

User groups w.r.t. the number of ratings

Figure 5: Accuracy of recommendation to cold-start users.

layers of G and D in the GAN-based models and the number of

latent factors in the MF-based models) and selected a set of values

that provide the highest accuracy. Since some of our competitors

such as CFGAN and NGCF are tailored to perform the one-class

collaborative filtering task [27, 33], which can be regarded as the

special case of this paper’s multi-class setting, we binarized R only

when running them.

5.1.4 Evaluation metrics. We employed precision, recall, normalized

discounted cumulative gain (nDCG), andmean reciprocal rank (MRR)

for evaluating our model’s recommendation accuracy [5, 7, 21].

Precision and recall focus on how many correct items are included

in the recommendation list while nDCG and MRR account for the

ranked positions of correct items in the recommendation list.

5.2 Experimental Results

5.2.1 Q1: Effectiveness on the cold-start problems. The problem in

the cold-start items is that they are very difficult to be recommended,

and thus rarely selected by users as well, as illustrated in Figure 1(b).

We quantitatively measured such problems by defining the notions

of “exposure ratio” and “hit ratio”: when a CF model recommends

top-N items to users, the exposure ratio reveals how many cold-

start items are exposed (i.e., included in the top-N recommendation

list) to users, and the hit ratio does how many those items are

actually chosen by users. Formally, the exposure ratio is computed

by B/Awhere B is the number of cold-start items which are exposed
to at least one user, and A is the number of the entire cold-start

items. The hit ratio is computed by C/A where C is the number of

cold-start items which are recommended and actually chosen by at

least one user (i.e., included in at least one user’s ground truth).

Figure 4 reports each method’s results of exposure ratio and hit

ratio on each dataset. In each graph, X% in the x-axis indicates

that the bottom-X percent of items according to the number of

ratings were defined as cold-start items. AutoRec (AE in short,

here) and ZIautorec (ZI in short, here) were compared with ours in

this experiment. Since the results on this task provided by other

methods are similar with or not on par with those of ZIautorec, we

omit their results in Figure 4 due to space limitations. We observed

that AutoRec has difficulty in understanding the cold-start items,

thereby recommending none or very few of them to users on all

the four datasets. Even after the data imputation with ZI, ZIautorec
still failed to exhibit at least one cold-start item to at least one

user on many cases (e.g., dealing with bottom-10% and 20% cold-

start items on Watcha, and all cases on Movielens 100K). However,

after AR-CF generated their neighbors, we can observe that AR-

CFautorec pushed a meaningful number of cold-start items to the

top-N recommendation lists to users. Moreover, we can see that

some of the recommended items are correct recommendation, i.e.,

they are actually chosen and highly rated by users. These results

demonstrate the effectiveness of our AR-CF in resolving the cold-

start item problems: by generating their realistic neighbors, AR-CF

can “promote” the cold-start items and even result in purchases

without requiring any cost or human powers.

Next, Figure 5 highlights the recommendation accuracy of our

AR-CF to the cold-start users in terms of precision@20; the other

metrics exhibited very similar tendency, hence they are omitted due

to space limitations. We defined the cold-start users as the bottom-

X percent of users according to their number of ratings, and then

tried different X values; AutoRec, ZIautorec, and AR-CFautorec are

compared as well. The experimental results demonstrate that our

AR-CF is really effective in solving the cold-start user problem.

For example, AR-CFautorec performs well to the bottom-10% cold-

start users on Watcha compared to ZIautorec (12.8% improved) and

on Ciao (11% improved). It is also worth mentioning that AR-CF

Session 7C: Neural Collaborative Filtering 2 SIGIR ’20, July 25–30, 2020, Virtual Event, China

1257

Figure 6: Visualization of the real users and virtual neighbors at specific epochs. Some selected users and their corresponding

virtual neighbors are connected each other and are represented by the large circles and rhombuses, respectively.

Table 3: Comparison results. The best accuracy on each metric among competing methods is highlighted with bold face.

datasets Movielens 100K Movielens 1M Watcha CiaoDVD

metrics Pre. Rec. nDCG MRR Pre. Rec. nDCG MRR Pre. Rec. nDCG MRR Pre. Rec. nDCG MRR

SVD .0529 .0284 .0644 .1389 .0507 .0142 .0466 .0777 .0664 .0536 .0777 .1490 .0068 .0274 .0180 .0169

AutoRec .0897 .0432 .0999 .1876 .0568 .0206 .0651 .1380 .0636 .0539 .0754 .1433 .0069 .0278 .0181 .0169

PureSVD .1453 .1019 .1673 .2855 .0953 .0311 .0997 .1765 .1187 .0893 .1387 .2610 .0081 .0330 .0230 .0217

CDAE .1411 .0843 .1561 .2608 .0856 .0410 .0922 .1722 .0968 .0685 .1057 .1981 .0069 .0286 .0188 .0176

CFGAN .1451 .0826 .1610 .2755 .0904 .0398 .0972 .1785 .1015 .0696 .1100 .2005 .0072 .0296 .0188 .0173

NGCF .1462 .0924 .1630 .2762 .0911 .0433 .0967 .1742 .1056 .0735 .1177 .2169 .0086 .0352 .0242 .0230

MisGANsvd .1643 .1032 .1891 .3131 .1028 .0390 .1096 .1953 .1231 .0922 .1428 .2634 .0071 .0295 .0188 .0173

MisGANautorec .1627 .1034 .1872 .3125 .0994 .0389 .1059 .1898 .1269 .0951 .1456 .2633 .0071 .0318 .0210 .0189

GAINsvd .1614 .1050 .1864 .3109 .0991 .0372 .1054 .1895 .1210 .0908 .1398 .2551 .0089 .0355 .0245 .0229

GAINautorec .1592 .0987 .1839 .3108 .0943 .0331 .1016 .1895 .1273 .0973 .1459 .2636 .0085 .0350 .0239 .0221

ZIsvd .1689 .1124 .1936 .3181 .1039 .0378 .1103 .1969 .1248 .0938 .1463 .2700 .0093 .0371 .0261 .0250

ZIautorec .1656 .1084 .1900 .3173 .1037 .0397 .1098 .1957 .1260 .0924 .1472 .2681 .0097 .0405 .0274 .0252

RAGANsvd .1596 .1003 .1855 .3141 .1015 .0424 .1091 .1951 .1272 .0946 .1479 .2725 .0099 .0377 .0269 .0263

RAGANautorec .1663 .1045 .1911 .3140 .1043 .0470 .1116 .1973 .1231 .0927 .1452 .2681 .0096 .0392 .0257 .0236

AR-CFsvd .1678 .1077 .1971 .3332 .1052 .0482 .1133 .2038 .1319 .0973 .1527 .2738 .0103 .0417 .0288 .0274

AR-CFautorec .1707 .1127 .1954 .3254 .1047 .0455 .1120 .2005 .1358 .1016 .1548 .2767 .0106 .0448 .0290 .0267

is especially beneficial for the 10% and 20% cold-start users (i.e.,

“extremely” cold-start users). We believe such results came from the

idea of our AR-CF that carefully generates the realistic neighbors

of cold-start users to help the CF models understand them better,

rather than simply filling the missing cells in R as other imputation

methods did.

Here, we further examined whether our CGANs were well-

trained so that the generated neighbors are highly plausible. Figure

6 visualizes the users (i.e., user rating vectors) in Movielens 100K by

employing UMAP (Uniform Manifold Approximation and Projection)

[25], one of the most popular visualization tools. In each plot, all

the real users are projected on a shared 2D space at a specific epoch.

Also, we chose 10 real users and visualized them and their virtual

neighbors as well. As shown in the plot at epoch 250, our CGANs

seemed to be under-trained because the generated virtual neighbors

are quite far from their corresponding real users. However, we can

observe that the distance between a pair of users tends to get closer

as our CGANs are trained more. Finally, at 1000 epoch, we see that

each pair of real and virtual users are placed very closely to each

other in the space. Owing to these virtual (but plausible) neighbors,

the CF models could understand the cold-start users much better

and provide satisfactory recommendation to them. We note that

we obtained very similar visualizations when training the CGANs

0% 10% 30% 50% 70% 90%
The percentage of imputation

(a) AutoRec, ZIautorec, and AR-CFautorec

0.04

0.06

0.08

0.10
AutoRec ZI
AR-CF

0.000

0.025

0.050

0.075

0.100
SVD ZI

AR-CF

0% 10% 30% 50% 70% 90%
The percentage of imputation

autorec

(b) SVD, ZIsvd, and AR-CFsvd

autorec
svd

svd

Pr
ec

isi
on

@
20

Figure 7: Accuracy w.r.t. the amount of imputation.

for items and also on the other datasets, but omit them due to the

limited space.

5.2.2 Q2: Accuracy comparisons with state-of-the-arts for all users

and items. The results shown in Table 3 aim to confirm that AR-CF

is also effective in the general recommendation setting. We only

show top-5 recommendation results and omit the top-20 results due

to space limitation; they exhibited very similar trend. We observed

that (1) even though NGCF, CFGAN, and CDAE relied on the limited

information (i.e., binarized R), they performed better than expected;

especially NGCF outperformed several imputation-based methods

Session 7C: Neural Collaborative Filtering 2 SIGIR ’20, July 25–30, 2020, Virtual Event, China

1258

0.04

0.05

0.06

0.00 0.25 0.50 0.75 1.00 1.50 2.00
0.04

0.05

0.06

0.00 0.25 0.50 0.75 1.00 1.50 2.00

AR-CF
AR-CF

autorec
svd

0.04

0.05

0.06

Re
ca

ll@
5

Figure 8: Sensitivity analysis on δU and δI .

on Ciao. (2) The imputation-based methods performed much better

than the CF models without imputation. This is because the data

imputation relieves the data sparsity problem in R so that it makes

CF models provide more qualified recommendation results. (3) Our

AR-CF universally and consistently provided the best accuracy

compared with all the imputation methods as well as the basic CF

models, and we believe that the benefits are credited to AR-CF’s

characteristics that it can take the advantage of the performance

gains coming from the data imputation and can exploit the virtual

(but plausible) users and items as (additional) qualified training

data. Through this observation, we can confirm that AR-CF is not

only tailored to remedying the cold-start users and items, but is

also effective in improving entire users’ overall satisfaction with

recommendations.

Also, we further examined the performance of ours with ZI in

more detail, since we ran our framework on top of it. Figure 7

reports the accuracy (the y-axis) of ZI and ours equipped with Au-
toRec and SVD, according to the different percentages of missing

cells in R imputed by ZI (the x-axis). As shown in the figure, ZI
significantly improves original AutoRec and SVD; while enjoying

this significant improvement by ZI, our AR-CF further improves the

accuracy by augmenting additional users and items to R. These re-

sults are consistent regardless of howmaymissing cells are imputed

and which CF models are equipped.

5.2.3 Q3: Impact of key hyper-parameters. All the hyper-parameters

used in AR-CF are shown in Section 5.1.2, each of which would

affect the recommendation accuracy. Among them, this subsection

investigates the impact of the following hyper-parameters, which

are unique in our AR-CF and the most important in each of AR-step

and CF-step: (1) δU and δI , the numbers of virtual users and items
to be generated, and (2) αU and αI , the importance parameters
used in the rating refinement process. The results of only recall@5

on Movielens 1M are shown due to space limitations: those of the

other metrics and those on the other datasets showed similar trend.

Figure 8 reports the accuracy of AR-CFautorec with regards to

varying δU and δI . Here, we fixed αU = αI = 0.8. We empirically

found that the moderate range of δU and δI values would be in

[0.5, 1.5]. If they are set with smaller values (e.g., less than 0.5), there

won’t be enough numbers of virtual users and items, so they are not

that much influential. In contrast, if they are set with larger values

(e.g., more than 1.5), CF models would pay too much attention to

understanding the virtual users and items, rather than achieving

its original goal of capturing preferences of real users on real items.

Hence, δU and δI are set to 1.0 and 0.75, respectively; we believe

it would provide a good balance in focus between virtual and real

users (resp. items).

autorec

svd

Re
ca

ll@
5

0.02

0.03

0.04

0.05

0 0.2 0.4 0.6 0.8 1

AR-CF
AR-CF

0 0.2 0.4 0.6 0.8 1

Figure 9: Impact of αU and αI on accuracy.

Figure 9 shows the accuracy over varying αU and αI . Here, the
two extreme cases (i.e., αU = αI = 1 and αU = αI = 0) provided
lower accuracy, which implies the necessity of using both the real

ratings as well as the generated ratings in our rating refinement

step. We observe that the accuracy grows until αU and αI reach

around 0.8. These results show that focusing more on a real (target)

user’s ratings is the most important in recommending items to her,

but her neighbors’ ratings as well as each target item’s neighbors’

ratings are still important and are worth referring to.

5.2.4 Q4: Scalability analysis. We analyze the scalability of our AR-

CF because it involves the generated users and items that require

additional computations in model training, rating prediction, and

rating refinement. We tested it on CiaoDVD and Movielens 1M

since CiaoDVD has the largest numbers of users and items and

Movielens 1M has the largest number of ratings. For each dataset,

we generated 500 users and 500 items and augmented them to

R. Then, we trained AutoRec and SVD to predict the unknown

ratings and finally went through the rating refinement process. We

repeated this experiment 10 times, where each iteration doubles

the number of users and items to be generated and augmented.

We measured the time taken by the two major computations (i.e.,

(1) model training and (2) rating prediction and refinement after

the model training) in each iteration. Our experimental results

are summarized in Figure 10. In each graph, the x-axis indicates
each iteration, and the y-axis does computation time taken by the
aforementioned tasks (in log scale). We ran all our experiments on

a single machine equipped with an i9 7700K Intel CPU, 64GB RAM,

and NVIDIA TITAN XP GPU.

We can observe that the rating prediction and refinement were

performed very fast compared with the model training. In both

datasets, the model training taken by each iteration increases lin-

early according to the increasing number of users and items aug-

mented. Meanwhile, AutoRec performed much faster than SVD

because AutoRec’s training can be easily parallelized by fast GPU.

The training of SVD took much more time in Movielens 1M since

it has a much more number of ratings than CiaoDVD. We can con-

clude that AR-CF is scalable to the augmented users and items,

requiring linear time in the number of users and items generated.

Also, using AutoRec or any DNN-based model as CF would require

a smaller time for additional computations thanks to the effective

parallelism by using the GPU.

6 CONCLUDING REMARKS

In this paper, we proposed AR-CF, a novel framework for addressing

the well-known cold-start problems. The AR-step in our framework

Session 7C: Neural Collaborative Filtering 2 SIGIR ’20, July 25–30, 2020, Virtual Event, China

1259

(a) CiaoDVD (b) Movielens 1M

1

10

100

1000

10000

0 1 2 3 4 5 6 7 8 9 10

[SVD] model training [SVD] rating prediction and refinement
[AutoRec] model training [AutoRec] rating prediction and refinement

tim
e

(in
 se

co
nd

s)

1

10

100

1000

10000

100000

0 1 2 3 4 5 6 7 8 9 10

Figure 10: Scalability analysis.

carefully trains four different CGANs to generate virtual, but realis-

tic neighbors of cold-start users and items. The generated neighbors

are augmented to the original rating matrix as additional rows (i.e.,

users) and columns (i.e., items). Then, in our CF-step, we proposed

a rating refinement process that exploits virtual neighbors’ ratings

to adjust their corresponding real users/items’ ratings. Through

our extensive experiments, we demonstrated that AR-CF is really

effective in dealing with the cold-start problems: it significantly

improved the accuracy of recommendation to the cold-start users,

and also made a meaningful number of the cold-start items to be

displayed in top-N lists of users. Moreover, it performed the best

among the recently proposed, state-of-the-art data imputationmeth-

ods. Its sensitivity to several key-hyper parameters and scalability

to the generated users and items are also analyzed accordingly.

Indeed, AR-CF opens up a novel way to deal with the cold-start

problems effectively via going outside the box of conventional data

imputation approaches and working on top of them.

ACKNOWLEDGMENTS

This research was supported by (1) Next-Generation Information

Computing Development Program through the National Research

Foundation of Korea (NRF) funded by the Ministry of Science, ICT

(NRF-2017M3C4A7069440), (2) the National Research Foundation

of Korea (NRF) grant funded by the Korea government (MSIT) (No.

NRF-2020R1A2B5B03001960), and (3) Next-Generation Information

Computing Development Program through the National Research

Foundation of Korea (NRF) funded by the Ministry of Science and

ICT (No. NRF-2017M3C4A7083678).

REFERENCES
[1] R. Berg, T. N. Kipf, and M. Welling. 2017. Graph convolutional matrix completion.

arXiv preprint arXiv:1706.02263 (2017).
[2] R. Burke. 2002. Hybrid recommender systems: Survey and experiments. User

modeling and user-adapted interaction 12, 4 (2002), 331–370.
[3] D.-K. Chae, S.-W. Kim, and J.-T. Lee. 2019. Autoencoder-based personalized

ranking framework unifying explicit and implicit feedback for accurate top-N
recommendation. Knowledge-Based Systems 176 (2019), 110–121.

[4] D.-K. Chae, J. A. Shin, and S.-W. Kim. 2019. Collaborative adversarial autoen-
coders: An effective collaborative filtering model under the GAN framework.
IEEE Access 7 (2019), 37650–37663.

[5] D.-K. Chae et al. 2018. CFGAN: A generic collaborative filtering framework based
on generative adversarial networks. In ACM CIKM. 137–146.

[6] D.-K. Chae et al. 2018. On identifying k-nearest neighbors in neighborhood
models for efficient and effective collaborative filtering. Neurocomputing 278
(2018), 134–143.

[7] D.-K. Chae et al. 2019. Rating augmentation with generative adversarial networks
towards accurate collaborative filtering. InWWW. 2616–2622.

[8] K.-J. Cho et al. 2019. No, that’s not my feedback: TV show recommendation
using watchable interval. In IEEE ICDE. 316–327.

[9] E. Choi et al. 2017. Generating multi-label discrete electronic health records
using generative adversarial networks. arXiv preprint arXiv:1703.06490 (2017).

[10] P. Cremonesi, Y. Koren, and R. Turrin. 2010. Performance of recommender
algorithms on top-n recommendation tasks. In ACM RecSys. 39–46.

[11] C. Donahue, J. McAuley, and M. Puckette. 2018. Synthesizing audio with genera-
tive adversarial networks. arXiv preprint arXiv:1802.04208 (2018).

[12] I. Goodfellow et al. 2014. Generative adversarial nets. In NIPS. 2672–2680.
[13] R. He and J. McAuley. 2016. VBPR: visual bayesian personalized ranking from

implicit feedback. In AAAI.
[14] X. He et al. 2016. Fast matrix factorization for online recommendation with

implicit feedback. In ACM SIGIR. 549–558.
[15] J. M. Hernández-Lobato, N. Houlsby, and Z. Ghahramani. 2014. Probabilistic

matrix factorization with non-random missing data. In ICML. 1512–1520.
[16] D.-G. Hong et al. 2019. CrowdStart: Warming up cold-start items using crowd-

sourcing. Expert Systems with Applications 138 (2019).
[17] W.-S. Hwang et al. 2016. “Told you i didn’t like it”: Exploiting uninteresting items

for effective collaborative filtering. In IEEE ICDE. 349–360.
[18] Y. Koren, R. Bell, and C. Volinsky. 2009. Matrix factorization techniques for

recommender systems. Computer 42, 8 (2009).
[19] A. Krizhevsky, I. Sutskever, and G. E. Hinton. 2012. Imagenet classification with

deep convolutional neural networks. In NIPS. 1097–1105.
[20] Y.-C. Lee, S.-W. Kim, and D. Lee. 2018. gOCCF: Graph-theoretic one-class collab-

orative filtering based on uninteresting items. In AAAI.
[21] J. Lee et al. 2016. Improving the accuracy of top-N recommendation using a

preference model. Information Sciences 348 (2016), 290–304.
[22] J. Lee et al. 2019. l -Injection: Toward effective collaborative filtering using

uninteresting items. IEEE TKDE 31, 1 (2019), 3–16.
[23] Y. Lee et al. 2018. How to impute missing ratings?: Claims, solution, and its

application to collaborative filtering. InWWW. 783–792.
[24] S. C.-X. Li, B. Jiang, and B. Marlin. 2019. MisGAN: Learning from incomplete data

with generative adversarial networks. arXiv preprint arXiv:1902.09599 (2019).
[25] L. McInnes et al. 2018. UMAP: Uniform manifold approximation and projection.

Journal of Open Source Software 3, 29 (2018), 861.
[26] M. Mirza and S. Osindero. 2014. Conditional generative adversarial nets. arXiv

preprint arXiv:1411.1784 (2014).
[27] R. Pan et al. 2008. One-class collaborative filtering. In IEEE ICDM. 502–511.
[28] C. Park et al. 2016. Improving top-k recommendation with truster and trustee

relationship in user trust network. Information Sciences 374 (2016), 100–114.
[29] A. Radford, L. Metz, and S. Chintala. 2015. Unsupervised representation learn-

ing with deep convolutional generative adversarial networks. arXiv preprint
arXiv:1511.06434 (2015).

[30] Y. Ren et al. 2012. The efficient imputation method for neighborhood-based
collaborative filtering. In ACM CIKM. 684–693.

[31] Y. Ren et al. 2013. AdaM: Adaptive-maximum imputation for neighborhood-based
collaborative filtering. In IEEE/ACM ASONAM. 628–635.

[32] S. Sedhain et al. 2015. Autorec: Autoencoders meet collaborative filtering. In
WWW. 111–112.

[33] S. Sedhain et al. 2016. On the effectiveness of linear models for one-class collabo-
rative filtering.. In AAAI. 229–235.

[34] B. Settles. 2009. Active learning literature survey. Technical Report. University of
Wisconsin-Madison Department of Computer Sciences.

[35] H. Steck. 2010. Training and testing of recommender systems on data missing
not at random. In KDD. 713–722.

[36] F. Strub and J. Mary. 2015. Collaborative filtering with stacked denoising autoen-
coders and sparse inputs. In NIPS workshop on machine learning for eCommerce.

[37] X. Su and T. M. Khoshgoftaar. 2009. A survey of collaborative filtering techniques.
Advances in artificial intelligence 2009 (2009), 4.

[38] J. Tang, H. Gao, and H. Liu. 2012. mTrust: Discerning multi-faceted trust in a
connected world. InWSDM. 93–102.

[39] M. Wan et al. 2017. Modeling consumer preferences and price sensitivities from
large-scale grocery shopping transaction logs. InWWW. 1103–1112.

[40] H. Wang, N. Wang, and D.-Y. Yeung. 2015. Collaborative deep learning for
recommender systems. In KDD. 1235–1244.

[41] Q. Wang et al. 2019. Enhancing collaborative filtering with generative augmenta-
tion. In KDD. 548–556.

[42] X. Wang et al. 2019. Neural graph collaborative filtering. In ACM SIGIR. 165–174.
[43] Y. Wu et al. 2016. Collaborative denoising auto-encoders for top-N recommender

systems. InWSDM. 153–162.
[44] J. Yoon, J. Jordon, and M. Schaar. 2018. GAIN: Missing data imputation using

generative adversarial nets. In ICML. 5675–5684.
[45] J. Yu et al. 2019. Generating reliable friends via adversarial training to improve

social recommendation. In IEEE ICDM. 768–777.

Session 7C: Neural Collaborative Filtering 2 SIGIR ’20, July 25–30, 2020, Virtual Event, China

1260

