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Fig. 1. With CNN EXPLAINER, learners can visually examine how Convolutional Neural Networks (CNNs) transform input images
into classification predictions (e.g., predicting espresso for an image of a coffee cup), and interactively learn about their underlying
mathematical operations. In this example, a learner uses CNN EXPLAINER to understand how convolutional layers work through three
tightly integrated views, each explaining the convolutional process in increasing levels of detail. (A) The Overview visualizes a CNN
architecture where each neuron is encoded as a square with a heatmap representing the neuron’s output. (B) Clicking a neuron reveals
how its activations are computed by the previous layer’s neurons, displaying the often-overlooked intermediate computation through
animations of sliding kernels. (C) Convolutional Interactive Formula View for inspecting underlying mathematics of the dot-product
operation core to convolution. For clarity, some annotations are removed and views are re-positioned.

Abstract—Deep learning’s great success motivates many practitioners and students to learn about this exciting technology. However, it
is often challenging for beginners to take their first step due to the complexity of understanding and applying deep learning. We present
CNN EXPLAINER, an interactive visualization tool designed for non-experts to learn and examine convolutional neural networks (CNNs),
a foundational deep learning model architecture. Our tool addresses key challenges that novices face while learning about CNNs,
which we identify from interviews with instructors and a survey with past students. CNN EXPLAINER tightly integrates a model overview
that summarizes a CNN’s structure, and on-demand, dynamic visual explanation views that help users understand the underlying
components of CNNs. Through smooth transitions across levels of abstraction, our tool enables users to inspect the interplay between
low-level mathematical operations and high-level model structures. A qualitative user study shows that CNN EXPLAINER helps users
more easily understand the inner workings of CNNs, and is engaging and enjoyable to use. We also derive design lessons from
our study. Developed using modern web technologies, CNN EXPLAINER runs locally in users’ web browsers without the need for
installation or specialized hardware, broadening the public’s education access to modern deep learning techniques.

Index Terms—Deep learning, machine learning, convolutional neural networks, visual analytics

1 INTRODUCTION

Deep learning now enables many of our everyday technologies. Its
continued success and potential application in diverse domains has
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attracted immense interest from students and practitioners who wish
to learn and apply this technology. However, many beginners find it
challenging to take the first step in studying and understanding deep
learning concepts. For example, convolutional neural networks (CNNs),
a foundational deep learning model architecture, is often one of the first
and most widely used models that students learn. CNNs are often used
in image classification, achieving state-of-the-art performance [33].
However, through interviews with deep learning instructors and a survey
of past students, we found that even for this “introductory” model, it can
be challenging for beginners to understand how inputs (e.g., image data)
are transformed into class predictions. This steep learning curve stems
from CNN’s complexity, which typically leverages many computational
layers to reach a final decision. Within a CNN, there are many types of

network layers (e.g., fully-connected, convolutional, activation), each
with a different structure and underlying mathematical operations. Thus,
a student needs to develop a mental model of not only how each layer
operates, but also how to choose different layers that work together to
transform data. Therefore, a key challenge in learning about CNNs is
the intricate interplay between low-level mathematical operations and
high-level integration of such operations within the network.

Key challenges in designing learning tools for CNNs. There is
a growing body of research that uses interactive visualization to ex-
plain the complex mechanisms of modern machine learning algorithms,
such as TensorFlow Playground [50] and GAN Lab [29], which help
students learn about dense neural networks and generative adversarial
networks (GANs) respectively. Regarding CNNs, some existing visu-
alization tools focus on demonstrating the high-level model structure
and connections between layers (e.g., Harley’s Node-Link Visualiza-
tion [20]), while others focus on explaining the low-level mathematical
operations (e.g., Karpathy’s interactive CNN demo [30]). There is no
visual learning tool that explains and connects CNN concepts from
both levels of abstraction. This interplay between global model struc-
ture and local layer operations has been identified as one of the main
obstacles to learning deep learning models, as discussed in [50] and
corroborated from our interviews with instructors and student survey.
CNN EXPLAINER aims to bridge this critical gap.

Contributions. In this work, we contribute:

• CNN EXPLAINER, an interactive visualization tool designed
for non-experts to learn about both CNN’s high-level model
structure and low-level mathematical operations, addressing learn-
ers’ key challenge in connecting unfamiliar layer mechanisms
with complex model structures. Our tool advances over prior
work [20, 30], overcoming unique design challenges identified
from a literature review, instructor interviews and a survey with
past students (Sect. 4).

• Novel interactive system design of CNN EXPLAINER (Fig. 1),
which adapts familiar techniques such as overview + detail and
animation to simultaneously summarize intricate model structure,
while providing context for users to inspect detailed mathematical
operations. CNN EXPLAINER’s visualization techniques work to-
gether through fluid transitions between different abstraction levels
(Fig. 2), helping users gain a more comprehensive understanding
of complex concepts within CNNs (Sect. 6).

• Design lessons distilled from user studies on an interactive vi-
sualization tool for machine learning education. While visual
and interactive approaches have been gaining popularity in ex-
plaining machine learning concepts to non-experts, little work
has been done to evaluate such tools [28, 43]. We interviewed
four instructors who have taught CNNs and conducted a survey
with 19 students who have previously learned about CNNs to iden-
tify the needs and challenges for a deep learning educational tool
(Sect. 4). In addition, we conducted an observational study with
16 students to evaluate the usability of CNN EXPLAINER, and
investigated how our tool could help students better understand
CNN concepts (Sect. 8). Based on these studies, we discuss the
advantages and limitations of interactive visual educational tools
for machine learning.

• An open-source, web-based implementation that broadens the
public’s education access to modern deep learning techniques with-
out the need for advanced computational resources. Deploying
deep learning models conventionally requires significant com-
puting resources, e.g., servers with powerful hardware. In addi-
tion, even with a dedicated backend server, it is challenging to
support a large number of concurrent users. Instead, CNN EX-
PLAINER is developed using modern web technologies, where
all results are directly and efficiently computed in users’ web
browsers (Sect. 6.7). Therefore, anyone can access CNN EX-
PLAINER using their web browser without the need for installa-
tion or a specialized backend. Our code is open-sourced1 and

1Code: https://github.com/poloclub/cnn-explainer
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Fig. 2. In CNN EXPLAINER, tightly integrated views with different levels
of abstractions work together to help users more easily learn about the
intricate interplay between a CNN’s high-level structure and low-level
mathematical operations. (A) the Overview summarizes connections of
all neurons; (B) the Elastic View animates the intermediate convolutional
computation of the user-selected neuron in the Overview ; and (C) Inter-
active Formula interactively demonstrates the detailed calculation on the
selected input in the Elastic View.

CNN EXPLAINER is available at the following public demo link:
https://poloclub.github.io/cnn-explainer.

Broadening impact of visualization for AI. In recent years, many
visualization systems have been developed for deep learning, but very
few are designed for non-experts [20, 29, 44, 50], as surveyed in [23].
CNN EXPLAINER joins visualization research that introduces begin-
ners to modern machine learning concepts. Applying visualization
techniques to explain the inner workings of complex models has great
potential. We hope our work will inspire further research and devel-
opment of visual learning tools that help democratize and lower the
barrier to understanding and applying artificial intelligent technologies.

2 BACKGROUND FOR CONVOLUTIONAL NEURAL NETWORKS

This section provides a high-level overview of convolutional neural
networks (CNNs) in the context of image classification, which will help
ground our work throughout this paper.

Image classification has a long history in the machine learning re-
search community. The objective of supervised image classification is
to map an input image, X , to an output class, Y . For example, given a
cat image, a sophisticated image classifier would output a class label
of “cat”. CNNs have demonstrated state-of-the-art performance on this
task, in part because of their multiple layers of computation that aim to
learn a better representation of image data.

CNNs are composed of several different layers (e.g., convolutional
layers, downsampling layers, and activation layers)—each layer per-
forms some predetermined function on its input data. Convolutional
layers “extract features” to be used for image classification, with early
convolutional layers in the network extracting low-level features (e.g.,
edges) and later layers extracting more-complex semantic features (e.g.,
car headlights). Through a process called backpropagation, a CNN
learns kernel weights and biases from a collection of input images.
These values also known as parameters, which summarize important
features within the images, regardless of their location. These kernel
weights slide across an input image performing an element-wise dot-
product, yielding intermediate results that are later summed together
with the learned bias value. Then, each neuron gets an output based
on the input image. These outputs are also called activation maps. To
decrease the number of parameters and help avoid overfitting, CNNs
downsample inputs using another type of layer called pooling. Acti-
vation functions are used in a CNN to introduce non-linearity, which
allows the model to learn more complex patterns in data. For example,
a Rectified Linear Unit (ReLU) is defined as max(0,x), which outputs
the positive part of its argument. These functions are also often used
prior to the output layer to normalize classification scores, for example,
the activation function called Softmax performs a normalization on
unscaled scalar values, known as logits, to yield output class scores that
sum to one. To summarize, compared to classic image classification
models that can be over-parameterized and fail to take advantage of
inherent properties in image data, CNNs create spatially-aware repre-
sentations through multiple stacked layers of computation.
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attracted immense interest from students and practitioners who wish
to learn and apply this technology. However, many beginners find it
challenging to take the first step in studying and understanding deep
learning concepts. For example, convolutional neural networks (CNNs),
a foundational deep learning model architecture, is often one of the first
and most widely used models that students learn. CNNs are often used
in image classification, achieving state-of-the-art performance [33].
However, through interviews with deep learning instructors and a survey
of past students, we found that even for this “introductory” model, it can
be challenging for beginners to understand how inputs (e.g., image data)
are transformed into class predictions. This steep learning curve stems
from CNN’s complexity, which typically leverages many computational
layers to reach a final decision. Within a CNN, there are many types of

network layers (e.g., fully-connected, convolutional, activation), each
with a different structure and underlying mathematical operations. Thus,
a student needs to develop a mental model of not only how each layer
operates, but also how to choose different layers that work together to
transform data. Therefore, a key challenge in learning about CNNs is
the intricate interplay between low-level mathematical operations and
high-level integration of such operations within the network.

Key challenges in designing learning tools for CNNs. There is
a growing body of research that uses interactive visualization to ex-
plain the complex mechanisms of modern machine learning algorithms,
such as TensorFlow Playground [50] and GAN Lab [29], which help
students learn about dense neural networks and generative adversarial
networks (GANs) respectively. Regarding CNNs, some existing visu-
alization tools focus on demonstrating the high-level model structure
and connections between layers (e.g., Harley’s Node-Link Visualiza-
tion [20]), while others focus on explaining the low-level mathematical
operations (e.g., Karpathy’s interactive CNN demo [30]). There is no
visual learning tool that explains and connects CNN concepts from
both levels of abstraction. This interplay between global model struc-
ture and local layer operations has been identified as one of the main
obstacles to learning deep learning models, as discussed in [50] and
corroborated from our interviews with instructors and student survey.
CNN EXPLAINER aims to bridge this critical gap.

Contributions. In this work, we contribute:

• CNN EXPLAINER, an interactive visualization tool designed
for non-experts to learn about both CNN’s high-level model
structure and low-level mathematical operations, addressing learn-
ers’ key challenge in connecting unfamiliar layer mechanisms
with complex model structures. Our tool advances over prior
work [20, 30], overcoming unique design challenges identified
from a literature review, instructor interviews and a survey with
past students (Sect. 4).

• Novel interactive system design of CNN EXPLAINER (Fig. 1),
which adapts familiar techniques such as overview + detail and
animation to simultaneously summarize intricate model structure,
while providing context for users to inspect detailed mathematical
operations. CNN EXPLAINER’s visualization techniques work to-
gether through fluid transitions between different abstraction levels
(Fig. 2), helping users gain a more comprehensive understanding
of complex concepts within CNNs (Sect. 6).

• Design lessons distilled from user studies on an interactive vi-
sualization tool for machine learning education. While visual
and interactive approaches have been gaining popularity in ex-
plaining machine learning concepts to non-experts, little work
has been done to evaluate such tools [28, 43]. We interviewed
four instructors who have taught CNNs and conducted a survey
with 19 students who have previously learned about CNNs to iden-
tify the needs and challenges for a deep learning educational tool
(Sect. 4). In addition, we conducted an observational study with
16 students to evaluate the usability of CNN EXPLAINER, and
investigated how our tool could help students better understand
CNN concepts (Sect. 8). Based on these studies, we discuss the
advantages and limitations of interactive visual educational tools
for machine learning.

• An open-source, web-based implementation that broadens the
public’s education access to modern deep learning techniques with-
out the need for advanced computational resources. Deploying
deep learning models conventionally requires significant com-
puting resources, e.g., servers with powerful hardware. In addi-
tion, even with a dedicated backend server, it is challenging to
support a large number of concurrent users. Instead, CNN EX-
PLAINER is developed using modern web technologies, where
all results are directly and efficiently computed in users’ web
browsers (Sect. 6.7). Therefore, anyone can access CNN EX-
PLAINER using their web browser without the need for installa-
tion or a specialized backend. Our code is open-sourced1 and

1Code: https://github.com/poloclub/cnn-explainer
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Fig. 2. In CNN EXPLAINER, tightly integrated views with different levels
of abstractions work together to help users more easily learn about the
intricate interplay between a CNN’s high-level structure and low-level
mathematical operations. (A) the Overview summarizes connections of
all neurons; (B) the Elastic View animates the intermediate convolutional
computation of the user-selected neuron in the Overview ; and (C) Inter-
active Formula interactively demonstrates the detailed calculation on the
selected input in the Elastic View.

CNN EXPLAINER is available at the following public demo link:
https://poloclub.github.io/cnn-explainer.

Broadening impact of visualization for AI. In recent years, many
visualization systems have been developed for deep learning, but very
few are designed for non-experts [20, 29, 44, 50], as surveyed in [23].
CNN EXPLAINER joins visualization research that introduces begin-
ners to modern machine learning concepts. Applying visualization
techniques to explain the inner workings of complex models has great
potential. We hope our work will inspire further research and devel-
opment of visual learning tools that help democratize and lower the
barrier to understanding and applying artificial intelligent technologies.

2 BACKGROUND FOR CONVOLUTIONAL NEURAL NETWORKS

This section provides a high-level overview of convolutional neural
networks (CNNs) in the context of image classification, which will help
ground our work throughout this paper.

Image classification has a long history in the machine learning re-
search community. The objective of supervised image classification is
to map an input image, X , to an output class, Y . For example, given a
cat image, a sophisticated image classifier would output a class label
of “cat”. CNNs have demonstrated state-of-the-art performance on this
task, in part because of their multiple layers of computation that aim to
learn a better representation of image data.

CNNs are composed of several different layers (e.g., convolutional
layers, downsampling layers, and activation layers)—each layer per-
forms some predetermined function on its input data. Convolutional
layers “extract features” to be used for image classification, with early
convolutional layers in the network extracting low-level features (e.g.,
edges) and later layers extracting more-complex semantic features (e.g.,
car headlights). Through a process called backpropagation, a CNN
learns kernel weights and biases from a collection of input images.
These values also known as parameters, which summarize important
features within the images, regardless of their location. These kernel
weights slide across an input image performing an element-wise dot-
product, yielding intermediate results that are later summed together
with the learned bias value. Then, each neuron gets an output based
on the input image. These outputs are also called activation maps. To
decrease the number of parameters and help avoid overfitting, CNNs
downsample inputs using another type of layer called pooling. Acti-
vation functions are used in a CNN to introduce non-linearity, which
allows the model to learn more complex patterns in data. For example,
a Rectified Linear Unit (ReLU) is defined as max(0,x), which outputs
the positive part of its argument. These functions are also often used
prior to the output layer to normalize classification scores, for example,
the activation function called Softmax performs a normalization on
unscaled scalar values, known as logits, to yield output class scores that
sum to one. To summarize, compared to classic image classification
models that can be over-parameterized and fail to take advantage of
inherent properties in image data, CNNs create spatially-aware repre-
sentations through multiple stacked layers of computation.
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3 RELATED WORK

3.1 Visualization for Deep Learning Education
Researchers and practitioners have been developing visualization sys-
tems that aim to help beginners learn about deep learning concepts.
Teachable Machine [9] teaches the basic concept of machine learning
classification, such as overfitting and underfitting, by allowing users
to train a deep neural network classifier with data collected from their
own webcam or microphone. The Deep Visualization Toolbox [58] also
uses live webcam images to interactively help users to understand what
each neuron has learned. These deep learning educational tools feature
direct model manipulation as core to their experience. For example,
users learn about CNNs, dense neural networks, and GANs through
experimenting with model training in ConvNetJS MNIST demo [30],
TensorFlow Playground [50], and GAN Lab [29], respectively. Beyond
2D visualizations, Node-Link Visualization [20] and TensorSpace [3]
demonstrate deep learning models in 3D space. Inspired by Chris
Olah’s interactive blog posts [44], interactive articles explaining deep
learning models with interactive visualization are gaining popularity as
an alternative medium for education [10, 39].

Most existing educational resources focus on explaining either the
high-level model structures and training process or the low-level math-
ematics, but not both. However, we found that one key challenge for
beginners learning about deep learning models is the difficulty con-
necting unfamiliar layer mechanisms with complex model structures
(discussed in Sect. 4). For example, TensorFlow Playground [50],
one of the few yet popular deep learning educational tools, focuses
on helping users develop intuition about the effects of different dense
neural network architectures, but does not explain the underlying math-
ematical operations. TensorFlow Playground also operates on synthetic
2D data, which can be challenging for users to transfer newly learned
concepts to more realistic data and models. In comparison, our work ex-
plains both model structure and mathematics of CNNs, a more complex
architecture, with real image data.

3.2 Algorithm Visualization
Before deep learning started to attract interest from students and prac-
titioners, visualization researchers have been studying how to design
algorithm visualizations (AV) to help people learn about dynamic be-
havior of various algorithms [7, 26, 48]. These tools often graphically
represent data structures and algorithms using interactive visualization
and animations [7, 14, 18]. While researchers have found mixed re-
sults on AV’s effectiveness in computer science education [8, 13, 16],
growing evidence has shown that student engagement is the key factor
for successfully applying AV in education settings [25, 42]. Naps, et
al. defined a taxonomy of six levels of engagement2 at which learners
can interact with AVs [42], and studies have shown higher engagement
level leads to better learning outcomes [13, 19, 32, 47].

Deep learning models can be viewed as specialized algorithms com-
prised of complex and stochastic interactions between multiple different
computational layers. However, there has been little work in designing
and evaluating visual educational tools for deep learning in the context
of AV. CNN EXPLAINER’s design draws inspiration from the guide-
lines proposed in AV literature (discussed in Sect. 5); our user study
results also corroborate some of the key findings in prior AV research
(discussed in Sect. 8.3). Our work advances AV’s landscape in covering
modern and pervasive machine learning algorithms.

3.3 Visual Analytics for Neural Networks & Predictions
Many visual analytics tools have been developed to help deep learning
experts analyze their models and predictions [5,15,23,27,36,37]. These
tools support many different tasks. For example, recent work such as
Summit [24] uses interactive visualization to summarize what features
a CNN model has learned and how those features interact and attribute
to model predictions. LSTMVis [54] makes long short-term memory
(LSTM) networks more interpretable by visualizing the model’s hidden
states. Similarly, GANVis [56] helps experts to interpret what a trained

2Six engagement categories: No Viewing, Viewing, Responding, Changing,
Constructing, Presenting.

generative adversarial network (GAN) model has learned. People
also use visual analytics tools to diagnose and monitor the training
process of deep learning models. Two examples, DGMTracker [35]
and DeepEyes [46], help developers better understand the training
process of CNNs and GANs, respectively. Also, visual analytics tools
recently have been developed to help experts detect and interpret the
vulnerability in their deep learning models [12, 34]. These existing
analytics tools are designed to assist experts in analyzing their model
and predictions, however, we focus on non-experts and learners, helping
them more easily learn about deep learning concepts.

4 FORMATIVE RESEARCH & DESIGN CHALLENGES

Our goal is to build an interactive visual learning tool to help students
gain understanding of key CNN concepts to design their own models.
To identify the learning challenges faced by the students, we conducted
interviews with deep learning instructors and surveyed past students.

Instructor interviews. To inform our tool’s design, we recruited
4 instructors (2 female, 2 male) who have taught CNNs in a large
university. We refer to them as T1-T4 throughout our discussion. One
instructor teaches computer vision, and the others teach deep learning.
We interviewed them one-on-one in a conference room (3/4) and via
a video-conferencing software (1/4); each interview lasted around 30
minutes. Through these semi-structured interviews, we learned that
(1) instructors currently rely on simple illustrations with toy examples
to explain CNN concepts, and an interactive tool like TensorFlow
Playground with real image inputs would be highly appreciated; and
(2) key challenges exist for instructors teaching and students learning
about CNNs, which informed us to design a student survey.

Student survey. After the interviews, we recruited students from a
large university who have previously studied CNNs to fill out an online
survey. We received 43 responses, and 19 of them (4 female, 15 male)
met the criteria. Among these 19 participants, 10 were Ph.D. students, 3
were M.S. students, 5 were undergraduates, and 1 was a faculty member.
We asked participants what were “the biggest challenges in studying
CNNs” and “the most helpful features if there was a visualization tool
for explaining CNNs to beginners”. We provided pre-selected options
based on the prior instructor interviews, but participants could write
down their own response if it was not included in the options. The
aggregated results of this survey are shown in Fig. 3.

Together with a literature review, we synthesized our findings from
these two studies into the following five design challenges (C1-C5).
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Fig. 3. Survey results from 19 participants who have previously learned
about CNNs. Top: Biggest challenges encountered during learning.
Bottom: Desired features for an interactive visual learning tool for CNNs.

C1. Intricate model structure. CNN models consist of many layers,
each having a different structure and underlying mathematical
functions [33]. Fewer past students listed CNN structure as their
biggest challenge, but most of them believe a visual learning tool
should explain the structure (Fig. 3), as the complex construc-
tion of CNNs can be overwhelming, especially for beginners who
just started learning. T2 said “It can be very hard for them [stu-
dents with less knowledge of neural networks] to understand the
structure of CNNs, you know, the connections between layers.”

C2. Complex layer operations. Different layers serve different pur-
poses in CNNs [17]. For example, convolutional layers exploit the
spatially local correlations in inputs—each convolutional neuron
connects to only a small region of its input; whereas max pooling
layers introduce regularization to prevent overfitting. T1 said, “The
most challenging part is learning the math behind it [CNN model].”
Many students also reported that CNN layer computations are the
most challenging learning objective (Fig. 3). To make CNNs per-
form better than other models in tasks like image classification,
these models have complex and unique mathematical operations
that many beginners may not have seen elsewhere.

C3. Connection between model structure and layer operation.
Based on instructor interviews and the survey results from past
students (Fig. 3), one of the cruxes to understand CNNs is under-
standing the interplay between low-level mathematical operations
(C2) and the high-level model structure (C1). Smilkov et al., cre-
ators of the popular dense neural network learning tool Tensorflow
Playground [50], also found this challenge key to learning about
deep learning models: “It’s not trivial to translate the equations
defining a deep network into a mental model of the underlying
geometric transformations [change of feature representations].”
In other words, in addition to comprehending the mathematical
formulas behind different layers, students are also required to un-
derstand how each operation works within the complex, layered
model structure.

C4. Effective algorithm visualization (AV). The success of applying
visualization to explain machine learning algorithms to beginners
[9,29,50] suggests that an AV tool is a promising approach to help
people more easily learn about CNNs. However, AV tools need
to be carefully designed to be effective in helping learners gain
an understanding of algorithms [13]. In particular, AV systems
need to clearly explain the mapping between the algorithm and its
visual encoding [40], and actively engage learners [32].

C5. Challenge in deploying interactive learning tools. Most neural
networks are written in deep learning frameworks, such as Tensor-
Flow [4] and PyTorch [45]. Although these libraries have made it
much easier to create AI models, they require users to understand
key concepts of deep learning in the first place [53]. Can we make
understanding CNNs more accessible without installation and cod-
ing, so that everyone has the opportunity to learn and interact with
deep learning models?

The above design challenges cover most of the desired features (Fig. 3).
We assessed the feasibility to also support explaining backpropagation
in the same tool, and we concluded that its effective explanation will
necessitate designs that are hard to be unified (e.g., backpropagation
Algorithm [2]) . Indeed, T1 commented that “Deriving backpropaga-
tion is applying a series chain rules [...] It doesn’t really make sense
to visualize the gradients [in our tool].” Supporting the training pro-
cess would require client-side in-browser computation on many data
examples, which incur both high amount of data download and slow
convergence ( [29,30]). Therefore, as the first prototype, we decided for
CNN EXPLAINER to focus on explaining inference after a model has
been trained. We plan to support the explanation for backpropagation
and training process as future work (Sect. 9).

5 DESIGN GOALS

Based on the identified design challenges (Sect. 4), we distill the fol-
lowing key design goals (G1–G5) for CNN EXPLAINER, an interactive
visualization tool to help students more easily learn about CNNs.

G1. Visual summary of CNN models and data flow. Based on the
survey results, showing the structure of CNNs is the most desired
feature for a visual learning tool (Fig. 3). Therefore, to give users
an overview of the structure of CNNs, we aim to create a visual
summary of a CNN model by visualizing all layer outputs and
connections in one view. This could help users to visually track
how input image data are transformed to final class predictions
through a series of layer operations (C1). (Sect. 6.1)

G2. Interactive interface for mathematical formulas. Since CNNs
employ various complex mathematical functions to achieve high
classification performance, it is important for users to understand
each mathematical operation in detail (C2). In response, we would
like to design an interactive interface for each mathematical for-
mula, enabling users to examine and better understand the inner-
workings of layers. (Sect. 6.3)

G3. Fluid transition between different levels of abstraction. To
help users connect low-level layer mathematical mechanisms to
high-level model structure (C3), we would like to design a focus +
context display of different views, and provide smooth transitions
between them. By easily navigating through different levels of
CNN model abstraction, users can get a holistic picture of how
CNN works. (Sect. 6.4)

G4. Clear communication and engagement. Our goal is to design
and develop an interactive system that is easy to understand and
engaging to use so that it can help people to more easily learn
about CNNs (C4). We aim to accompany our visualizations with
explanations to help users to interpret the graphical representation
of the CNN model (Sect. 6.5), and we wish to actively engage
learners through visualization customizations. (Sect. 6.6)

G5. Web-based implementation. To develop an interactive visual
learning tool that is accessible for users without installation and
coding (C5), we would like to use modern web browsers as the
platform to explain the inner-workings of a CNN model, where
users can access directly on their laptops or tablets. We also open-
source our code to support future research and development of
deep learning educational tools. (Sect. 6.7)

6 VISUALIZATION INTERFACE OF CNN EXPLAINER

CNN EXPLAINER’s interface is built on our prior prototype [57]. We
visualize the forward propagation, i.e., transforming an input image
into a class prediction, of a trained model (Fig. 4). Users can explore
a CNN at different levels of abstraction through the tightly integrated
Overview (Sect. 6.1), Elastic Explanation View (Sect. 6.2), and the
Interactive Formula View (Sect. 6.3). Our tool allows users to smoothly
transition between these views (Sect. 6.4), provides text annotations and
a tutorial article to help users interpret the visualizations (Sect. 6.5), and
engages them to test hypotheses through visualization customizations
(Sect. 6.6). The system is targeted towards beginners and describes all
mathematical operations necessary for a CNN to classify an image.
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Fig. 4. Illustration of Tiny VGG model used in CNN EXPLAINER: this
model uses the same, but fewer, convolutional layers as the original
VGGNet model [49]. We trained it to classify 10 classes of images.
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3 RELATED WORK

3.1 Visualization for Deep Learning Education
Researchers and practitioners have been developing visualization sys-
tems that aim to help beginners learn about deep learning concepts.
Teachable Machine [9] teaches the basic concept of machine learning
classification, such as overfitting and underfitting, by allowing users
to train a deep neural network classifier with data collected from their
own webcam or microphone. The Deep Visualization Toolbox [58] also
uses live webcam images to interactively help users to understand what
each neuron has learned. These deep learning educational tools feature
direct model manipulation as core to their experience. For example,
users learn about CNNs, dense neural networks, and GANs through
experimenting with model training in ConvNetJS MNIST demo [30],
TensorFlow Playground [50], and GAN Lab [29], respectively. Beyond
2D visualizations, Node-Link Visualization [20] and TensorSpace [3]
demonstrate deep learning models in 3D space. Inspired by Chris
Olah’s interactive blog posts [44], interactive articles explaining deep
learning models with interactive visualization are gaining popularity as
an alternative medium for education [10, 39].

Most existing educational resources focus on explaining either the
high-level model structures and training process or the low-level math-
ematics, but not both. However, we found that one key challenge for
beginners learning about deep learning models is the difficulty con-
necting unfamiliar layer mechanisms with complex model structures
(discussed in Sect. 4). For example, TensorFlow Playground [50],
one of the few yet popular deep learning educational tools, focuses
on helping users develop intuition about the effects of different dense
neural network architectures, but does not explain the underlying math-
ematical operations. TensorFlow Playground also operates on synthetic
2D data, which can be challenging for users to transfer newly learned
concepts to more realistic data and models. In comparison, our work ex-
plains both model structure and mathematics of CNNs, a more complex
architecture, with real image data.

3.2 Algorithm Visualization
Before deep learning started to attract interest from students and prac-
titioners, visualization researchers have been studying how to design
algorithm visualizations (AV) to help people learn about dynamic be-
havior of various algorithms [7, 26, 48]. These tools often graphically
represent data structures and algorithms using interactive visualization
and animations [7, 14, 18]. While researchers have found mixed re-
sults on AV’s effectiveness in computer science education [8, 13, 16],
growing evidence has shown that student engagement is the key factor
for successfully applying AV in education settings [25, 42]. Naps, et
al. defined a taxonomy of six levels of engagement2 at which learners
can interact with AVs [42], and studies have shown higher engagement
level leads to better learning outcomes [13, 19, 32, 47].

Deep learning models can be viewed as specialized algorithms com-
prised of complex and stochastic interactions between multiple different
computational layers. However, there has been little work in designing
and evaluating visual educational tools for deep learning in the context
of AV. CNN EXPLAINER’s design draws inspiration from the guide-
lines proposed in AV literature (discussed in Sect. 5); our user study
results also corroborate some of the key findings in prior AV research
(discussed in Sect. 8.3). Our work advances AV’s landscape in covering
modern and pervasive machine learning algorithms.

3.3 Visual Analytics for Neural Networks & Predictions
Many visual analytics tools have been developed to help deep learning
experts analyze their models and predictions [5,15,23,27,36,37]. These
tools support many different tasks. For example, recent work such as
Summit [24] uses interactive visualization to summarize what features
a CNN model has learned and how those features interact and attribute
to model predictions. LSTMVis [54] makes long short-term memory
(LSTM) networks more interpretable by visualizing the model’s hidden
states. Similarly, GANVis [56] helps experts to interpret what a trained

2Six engagement categories: No Viewing, Viewing, Responding, Changing,
Constructing, Presenting.

generative adversarial network (GAN) model has learned. People
also use visual analytics tools to diagnose and monitor the training
process of deep learning models. Two examples, DGMTracker [35]
and DeepEyes [46], help developers better understand the training
process of CNNs and GANs, respectively. Also, visual analytics tools
recently have been developed to help experts detect and interpret the
vulnerability in their deep learning models [12, 34]. These existing
analytics tools are designed to assist experts in analyzing their model
and predictions, however, we focus on non-experts and learners, helping
them more easily learn about deep learning concepts.

4 FORMATIVE RESEARCH & DESIGN CHALLENGES

Our goal is to build an interactive visual learning tool to help students
gain understanding of key CNN concepts to design their own models.
To identify the learning challenges faced by the students, we conducted
interviews with deep learning instructors and surveyed past students.

Instructor interviews. To inform our tool’s design, we recruited
4 instructors (2 female, 2 male) who have taught CNNs in a large
university. We refer to them as T1-T4 throughout our discussion. One
instructor teaches computer vision, and the others teach deep learning.
We interviewed them one-on-one in a conference room (3/4) and via
a video-conferencing software (1/4); each interview lasted around 30
minutes. Through these semi-structured interviews, we learned that
(1) instructors currently rely on simple illustrations with toy examples
to explain CNN concepts, and an interactive tool like TensorFlow
Playground with real image inputs would be highly appreciated; and
(2) key challenges exist for instructors teaching and students learning
about CNNs, which informed us to design a student survey.

Student survey. After the interviews, we recruited students from a
large university who have previously studied CNNs to fill out an online
survey. We received 43 responses, and 19 of them (4 female, 15 male)
met the criteria. Among these 19 participants, 10 were Ph.D. students, 3
were M.S. students, 5 were undergraduates, and 1 was a faculty member.
We asked participants what were “the biggest challenges in studying
CNNs” and “the most helpful features if there was a visualization tool
for explaining CNNs to beginners”. We provided pre-selected options
based on the prior instructor interviews, but participants could write
down their own response if it was not included in the options. The
aggregated results of this survey are shown in Fig. 3.

Together with a literature review, we synthesized our findings from
these two studies into the following five design challenges (C1-C5).

Connection of math & structure
Math behind layers

CNN training workflow
Backpropagation

Layer and weight dimensions
Layer connections
CNN structure

Show structure of CNNs
Use a live CNNmodel
Showmath formulas

Algorithm animation

Explain intermediate computations
Explain math in geometric context

Upload user's own model
Explain backpropagation
Change hyperparameters

Run on user's own image
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Fig. 3. Survey results from 19 participants who have previously learned
about CNNs. Top: Biggest challenges encountered during learning.
Bottom: Desired features for an interactive visual learning tool for CNNs.

C1. Intricate model structure. CNN models consist of many layers,
each having a different structure and underlying mathematical
functions [33]. Fewer past students listed CNN structure as their
biggest challenge, but most of them believe a visual learning tool
should explain the structure (Fig. 3), as the complex construc-
tion of CNNs can be overwhelming, especially for beginners who
just started learning. T2 said “It can be very hard for them [stu-
dents with less knowledge of neural networks] to understand the
structure of CNNs, you know, the connections between layers.”

C2. Complex layer operations. Different layers serve different pur-
poses in CNNs [17]. For example, convolutional layers exploit the
spatially local correlations in inputs—each convolutional neuron
connects to only a small region of its input; whereas max pooling
layers introduce regularization to prevent overfitting. T1 said, “The
most challenging part is learning the math behind it [CNN model].”
Many students also reported that CNN layer computations are the
most challenging learning objective (Fig. 3). To make CNNs per-
form better than other models in tasks like image classification,
these models have complex and unique mathematical operations
that many beginners may not have seen elsewhere.

C3. Connection between model structure and layer operation.
Based on instructor interviews and the survey results from past
students (Fig. 3), one of the cruxes to understand CNNs is under-
standing the interplay between low-level mathematical operations
(C2) and the high-level model structure (C1). Smilkov et al., cre-
ators of the popular dense neural network learning tool Tensorflow
Playground [50], also found this challenge key to learning about
deep learning models: “It’s not trivial to translate the equations
defining a deep network into a mental model of the underlying
geometric transformations [change of feature representations].”
In other words, in addition to comprehending the mathematical
formulas behind different layers, students are also required to un-
derstand how each operation works within the complex, layered
model structure.

C4. Effective algorithm visualization (AV). The success of applying
visualization to explain machine learning algorithms to beginners
[9,29,50] suggests that an AV tool is a promising approach to help
people more easily learn about CNNs. However, AV tools need
to be carefully designed to be effective in helping learners gain
an understanding of algorithms [13]. In particular, AV systems
need to clearly explain the mapping between the algorithm and its
visual encoding [40], and actively engage learners [32].

C5. Challenge in deploying interactive learning tools. Most neural
networks are written in deep learning frameworks, such as Tensor-
Flow [4] and PyTorch [45]. Although these libraries have made it
much easier to create AI models, they require users to understand
key concepts of deep learning in the first place [53]. Can we make
understanding CNNs more accessible without installation and cod-
ing, so that everyone has the opportunity to learn and interact with
deep learning models?

The above design challenges cover most of the desired features (Fig. 3).
We assessed the feasibility to also support explaining backpropagation
in the same tool, and we concluded that its effective explanation will
necessitate designs that are hard to be unified (e.g., backpropagation
Algorithm [2]) . Indeed, T1 commented that “Deriving backpropaga-
tion is applying a series chain rules [...] It doesn’t really make sense
to visualize the gradients [in our tool].” Supporting the training pro-
cess would require client-side in-browser computation on many data
examples, which incur both high amount of data download and slow
convergence ( [29,30]). Therefore, as the first prototype, we decided for
CNN EXPLAINER to focus on explaining inference after a model has
been trained. We plan to support the explanation for backpropagation
and training process as future work (Sect. 9).

5 DESIGN GOALS

Based on the identified design challenges (Sect. 4), we distill the fol-
lowing key design goals (G1–G5) for CNN EXPLAINER, an interactive
visualization tool to help students more easily learn about CNNs.

G1. Visual summary of CNN models and data flow. Based on the
survey results, showing the structure of CNNs is the most desired
feature for a visual learning tool (Fig. 3). Therefore, to give users
an overview of the structure of CNNs, we aim to create a visual
summary of a CNN model by visualizing all layer outputs and
connections in one view. This could help users to visually track
how input image data are transformed to final class predictions
through a series of layer operations (C1). (Sect. 6.1)

G2. Interactive interface for mathematical formulas. Since CNNs
employ various complex mathematical functions to achieve high
classification performance, it is important for users to understand
each mathematical operation in detail (C2). In response, we would
like to design an interactive interface for each mathematical for-
mula, enabling users to examine and better understand the inner-
workings of layers. (Sect. 6.3)

G3. Fluid transition between different levels of abstraction. To
help users connect low-level layer mathematical mechanisms to
high-level model structure (C3), we would like to design a focus +
context display of different views, and provide smooth transitions
between them. By easily navigating through different levels of
CNN model abstraction, users can get a holistic picture of how
CNN works. (Sect. 6.4)

G4. Clear communication and engagement. Our goal is to design
and develop an interactive system that is easy to understand and
engaging to use so that it can help people to more easily learn
about CNNs (C4). We aim to accompany our visualizations with
explanations to help users to interpret the graphical representation
of the CNN model (Sect. 6.5), and we wish to actively engage
learners through visualization customizations. (Sect. 6.6)

G5. Web-based implementation. To develop an interactive visual
learning tool that is accessible for users without installation and
coding (C5), we would like to use modern web browsers as the
platform to explain the inner-workings of a CNN model, where
users can access directly on their laptops or tablets. We also open-
source our code to support future research and development of
deep learning educational tools. (Sect. 6.7)

6 VISUALIZATION INTERFACE OF CNN EXPLAINER

CNN EXPLAINER’s interface is built on our prior prototype [57]. We
visualize the forward propagation, i.e., transforming an input image
into a class prediction, of a trained model (Fig. 4). Users can explore
a CNN at different levels of abstraction through the tightly integrated
Overview (Sect. 6.1), Elastic Explanation View (Sect. 6.2), and the
Interactive Formula View (Sect. 6.3). Our tool allows users to smoothly
transition between these views (Sect. 6.4), provides text annotations and
a tutorial article to help users interpret the visualizations (Sect. 6.5), and
engages them to test hypotheses through visualization customizations
(Sect. 6.6). The system is targeted towards beginners and describes all
mathematical operations necessary for a CNN to classify an image.
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Fig. 4. Illustration of Tiny VGG model used in CNN EXPLAINER: this
model uses the same, but fewer, convolutional layers as the original
VGGNet model [49]. We trained it to classify 10 classes of images.
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Flatten Elastic ExplanationBOverviewA Softmax Interactive FormulaC

C2

C1

Fig. 5. CNN EXPLAINER helps users learn about the connection between the output layer and its previous layer via three tightly integrated views.
Users can smoothly transition between these views to gain a more holistic understanding of the output layer’s lifeboat prediction computation. (A)
The Overview summarizes neurons and their connections. (B) The Flatten Elastic Explanation View visualizes the often-overlooked flatten layer,
helping users more easily understand how a high-dimensional max_pool_2 layer is connected to the 1-dimensional output layer. (C) The Softmax
Interactive Formula View further explains how the softmax function that precedes the output layer normalizes the penultimate computation results
(i.e., logits) into class probabilities through linking the (C1) numbers from the formula to (C2) their visual representations within the model structure.

Color scales are used throughout the visu-
alization to show the impact of weight, bias,
and activation map values. Consistently in the
interface, a red to blue color scale is used to visualize neuron activation
maps as heatmaps, and a yellow to green color scale represents weights
and biases. A persistent color scale legend is present across all views,
so the user always has context for the displayed colors. We chose these
distinct, diverging color scales with white representing zero, so that
a user can easily differentiate positive and negative values. We group
layers in the Tiny VGG model, our CNN architecture, into four units
and two modules (Fig. 4). Each unit starts with one convolutional layer.
Both modules are identical and contain the same sequence of operations
and hyperparameters. To analyze neuron activations throughout the
network with varying contexts, users can alter the range of the heatmap
color scale (Sect. 6.6).

6.1 Overview

The Overview (Fig. 1A, Fig. 5A) is the opening view of CNN EX-
PLAINER. This view represents the high-level structure of a CNN:
neurons grouped into layers with distinct, sequential operations. It
shows neuron activation maps for all layers represented as heatmaps
with a diverging red to blue color scale. Neurons in consecutive layers
are connected with edges, which connect each neuron to its inputs; to
see these edges, users simply can hover over any activation map. In
the model, neurons in convolutional layers and the output layer are
fully connected to the previous layer, while all other neurons are only
connected to one neuron in the previous layer.

6.2 Elastic Explanation View

The Elastic Explanation Views visualize the computations that leads to
an intermediate result without overwhelming users with low-level math-
ematical operations. CNN EXPLAINER enters two elastic views after
a user clicks a convolutional or an output neuron from the Overview.
After the transition, far-away heatmaps and edges fade out to help users
focus on the selected layers while providing CNN structural context in
the background (Fig. 1A).

Explaining the Convolutional Layer (Fig. 1B). The Convolutional
Elastic Explanation View applies a convolution on each input node
of the selected neuron, visualized by a kernel sliding across the input
neurons, which yields an intermediate result for each input neuron. This
sliding kernel forms the output heatmap during the animation, which

imitates the internal process during a convolution operation. While
the sliding kernel animation is in progress, the edges in this view are
represented as flowing-dashed lines; upon the animations completion,
the edges transition to solid lines.

Explaining the Flatten Layer (Fig. 5B). The Flatten Elastic Expla-
nation View visualizes the operation of transforming an n-dimensional
tensor into a 1-dimensional tensor by traversing pixels in row-major
order. This flattening operation is often necessary in a CNN prior to
classification so that the fully-connected output layer can make clas-
sification decisions. The view represents each neuron in the flatten
layer as a short line whose color is the same as its source pixel in the
previous layer. Then, edges connect these neurons with their source
components and intermediate results. These edges are colored based on
the model’s weight value. Users can hover over any component of this
connection to highlight the associated edges as well as the flatten
layer’s neuron and the pixel value from the previous layer.

6.3 Interactive Formula View
The Interactive Formula View consists of four variations designed
for convolutional layers, ReLU activation layers, pooling layers, and
the softmax activation function. After users have built up a mental
model of the CNN model structure from the previous Overview and
Elastic Explanation Views, these four views demonstrate the detailed
mathematics occurring in each layer.

Explaining Convolution, ReLU Activation, and Pooling (Fig. 6A,
B, C)) Each view animates the window-sliding operation on the input
matrix and output matrix over an interval, so that the user can under-
stand how each element in the input is connected to the output, and
vice versa. In addition, the user can interact with the these matrices
by hovering over the heatmaps to control the position of the sliding
window. For example, in the Convolutional Interactive Formula View
(Sect. 6.3A), as the user controls the window (kernel) position in either
the input or the output matrix, this view visualizes the dot-product
formula with input numbers and kernel weights directly extracted from
the current kernel. This synchronization between the input, the output
and the mathematical function enables the user to better understand
how the kernel convolves a matrix in convolutional layers.

Explaining the Softmax Activation (Fig. 6D). This view outlines
the operations necessary to calculate the classification score. It is ac-
cessible from the Flatten Elastic Explanation View to explain how the
results (logits) from the previous view lead to the final classification.
The view consists of logit values encoded as circles and colored with a

D

B

C

A

Fig. 6. The Interactive Formula Views explain the underlying mathe-
matical operations of a CNN. (A) shows the element-wise dot-product
occurring in a convolutional neuron, (B) visualizes the activation function
ReLU, and (C) illustrates how max pooling works. Users can hover over
heatmaps to display an operation’s input-to-output mapping. (D) inter-
actively explains the softmax function, helping users connect numbers
from the formula to their visual representations. Users can click the info
button to scroll to the corresponding section in the tutorial article, and
the play button to start the window sliding animation in (A)-(C).

light orange to dark orange color scale, which provides users with a
visual cue of the importance of every class. This view also includes a
corresponding equation, which explains how the classification score is
computed. When users enter this view, pairs of each logit circle and
its corresponding value in the equation appear sequentially with anima-
tions. As a user hovers over a logit circle, its value will be highlighted

in the equation along with the logit circle itself, so the user can under-
stand how each logit contributes to the softmax function. Hovering
over numbers in the equation will also highlight the appropriate logit
circles. Interacting with logit circles and the mathematical equation in
combination allows a user to discern the impact that every logit has on
the classification score in the output layer.

6.4 Transitions Between Views
The Overview is the starting state of CNN EXPLAINER and shows
the model architecture. From this high-level view, the user can begin
inspecting layers, connectivity, classifications, and tracing activations
of neurons through the model. When a user is interested in more detail,
they can click on neuron activation maps in the visualization. Neurons
in a layer that have simple one-to-one connections to a neuron in the
previous layer do not require an auxiliary Elastic Explanation View,
so upon clicking one of these neurons, a user will be able to enter
the Interactive Formula View to understand the low-level operation
that a tensor undergoes at that layer. If a neuron has more complex
connectivity, then the user will enter an Elastic Explanation View first.
In this view, CNN EXPLAINER uses visualizations and annotations
before displaying mathematics. Through further interaction, a user can
hover and click on parts of the Elastic Explanation View to uncover the
mathematical operations as well as examine the values of weights and
biases. The low-level Interactive Formula Views are only shown after
transitioning from the previous two views, so that users can learn about
the underlying mathemtical operations after hainvg a mental model of
the complex and layered CNN model structure.

6.5 Visualizations with Explanations
CNN EXPLAINER is accompanied by an interactive tutorial article
beneath the interface that explains CNN layer functions, hyperparam-
eters, and outlines CNN EXPLAINER’s interactive features. Learners
can read freely, or jump to specific sections by clicking layer names
or the info buttons (Fig. 6) from the main visualization. The article
provides beginner users detailed information regarding CNNs that can
supplement their exploration of the visualization.

Additionally, text annotations are placed
throughout the visualization (e.g., explaining the
flatten layer operation in the right image), which
further guide users and explain concepts that are
not easily discernible from the visualization alone.
These annotations help users map the underlying
algorithm to its visual encoding.

6.6 Customizable Visualizations
The Control Panel located across the top of the visualization (Fig. 1)
allows the user to alter the CNN input image and edit the overall repre-
sentation of the network. The Hyperparameter Widget (Fig. 7) enables
the user to experiment with differnt convolution hyperparameters.

Change input image. Users can choose
between (1) preloaded input images for each
output class, or (2) upload their own custom image. Preloaded im-
ages allow a user to easily access data from the classes the model
was originally trained on. User can also freely upload any image for
classification into the ten classes the network was trained on. CNN
EXPLAINER resizes a user’s image while preserving the aspect ratio
to fit one dimension of the model input size, and then crop the central
region if the other dimensions does not match. The fourth of six AV tool
engagement levels is allowing users to change the AV tool’s input [42].
Supporting custom image upload engages users, by allowing them to
analyze the network’s classification decisions and interactively testing
their own hypotheses on diverse image inputs.

Show network details. A user can toggle the
“Show detail” button, which displays additional net-
work specifications in the Overview. When toggled on, the Overview
will reveal layer dimensions and show color scale legends. Additionally,
a user can vary the activation map color scale range. The CNN architec-
ture presented by CNN EXPLAINER is grouped into four units and two
modules (Fig. 4). By modifying the drop-down menu in the Control
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Fig. 5. CNN EXPLAINER helps users learn about the connection between the output layer and its previous layer via three tightly integrated views.
Users can smoothly transition between these views to gain a more holistic understanding of the output layer’s lifeboat prediction computation. (A)
The Overview summarizes neurons and their connections. (B) The Flatten Elastic Explanation View visualizes the often-overlooked flatten layer,
helping users more easily understand how a high-dimensional max_pool_2 layer is connected to the 1-dimensional output layer. (C) The Softmax
Interactive Formula View further explains how the softmax function that precedes the output layer normalizes the penultimate computation results
(i.e., logits) into class probabilities through linking the (C1) numbers from the formula to (C2) their visual representations within the model structure.

Color scales are used throughout the visu-
alization to show the impact of weight, bias,
and activation map values. Consistently in the
interface, a red to blue color scale is used to visualize neuron activation
maps as heatmaps, and a yellow to green color scale represents weights
and biases. A persistent color scale legend is present across all views,
so the user always has context for the displayed colors. We chose these
distinct, diverging color scales with white representing zero, so that
a user can easily differentiate positive and negative values. We group
layers in the Tiny VGG model, our CNN architecture, into four units
and two modules (Fig. 4). Each unit starts with one convolutional layer.
Both modules are identical and contain the same sequence of operations
and hyperparameters. To analyze neuron activations throughout the
network with varying contexts, users can alter the range of the heatmap
color scale (Sect. 6.6).

6.1 Overview

The Overview (Fig. 1A, Fig. 5A) is the opening view of CNN EX-
PLAINER. This view represents the high-level structure of a CNN:
neurons grouped into layers with distinct, sequential operations. It
shows neuron activation maps for all layers represented as heatmaps
with a diverging red to blue color scale. Neurons in consecutive layers
are connected with edges, which connect each neuron to its inputs; to
see these edges, users simply can hover over any activation map. In
the model, neurons in convolutional layers and the output layer are
fully connected to the previous layer, while all other neurons are only
connected to one neuron in the previous layer.

6.2 Elastic Explanation View

The Elastic Explanation Views visualize the computations that leads to
an intermediate result without overwhelming users with low-level math-
ematical operations. CNN EXPLAINER enters two elastic views after
a user clicks a convolutional or an output neuron from the Overview.
After the transition, far-away heatmaps and edges fade out to help users
focus on the selected layers while providing CNN structural context in
the background (Fig. 1A).

Explaining the Convolutional Layer (Fig. 1B). The Convolutional
Elastic Explanation View applies a convolution on each input node
of the selected neuron, visualized by a kernel sliding across the input
neurons, which yields an intermediate result for each input neuron. This
sliding kernel forms the output heatmap during the animation, which

imitates the internal process during a convolution operation. While
the sliding kernel animation is in progress, the edges in this view are
represented as flowing-dashed lines; upon the animations completion,
the edges transition to solid lines.

Explaining the Flatten Layer (Fig. 5B). The Flatten Elastic Expla-
nation View visualizes the operation of transforming an n-dimensional
tensor into a 1-dimensional tensor by traversing pixels in row-major
order. This flattening operation is often necessary in a CNN prior to
classification so that the fully-connected output layer can make clas-
sification decisions. The view represents each neuron in the flatten
layer as a short line whose color is the same as its source pixel in the
previous layer. Then, edges connect these neurons with their source
components and intermediate results. These edges are colored based on
the model’s weight value. Users can hover over any component of this
connection to highlight the associated edges as well as the flatten
layer’s neuron and the pixel value from the previous layer.

6.3 Interactive Formula View
The Interactive Formula View consists of four variations designed
for convolutional layers, ReLU activation layers, pooling layers, and
the softmax activation function. After users have built up a mental
model of the CNN model structure from the previous Overview and
Elastic Explanation Views, these four views demonstrate the detailed
mathematics occurring in each layer.

Explaining Convolution, ReLU Activation, and Pooling (Fig. 6A,
B, C)) Each view animates the window-sliding operation on the input
matrix and output matrix over an interval, so that the user can under-
stand how each element in the input is connected to the output, and
vice versa. In addition, the user can interact with the these matrices
by hovering over the heatmaps to control the position of the sliding
window. For example, in the Convolutional Interactive Formula View
(Sect. 6.3A), as the user controls the window (kernel) position in either
the input or the output matrix, this view visualizes the dot-product
formula with input numbers and kernel weights directly extracted from
the current kernel. This synchronization between the input, the output
and the mathematical function enables the user to better understand
how the kernel convolves a matrix in convolutional layers.

Explaining the Softmax Activation (Fig. 6D). This view outlines
the operations necessary to calculate the classification score. It is ac-
cessible from the Flatten Elastic Explanation View to explain how the
results (logits) from the previous view lead to the final classification.
The view consists of logit values encoded as circles and colored with a

D

B

C

A

Fig. 6. The Interactive Formula Views explain the underlying mathe-
matical operations of a CNN. (A) shows the element-wise dot-product
occurring in a convolutional neuron, (B) visualizes the activation function
ReLU, and (C) illustrates how max pooling works. Users can hover over
heatmaps to display an operation’s input-to-output mapping. (D) inter-
actively explains the softmax function, helping users connect numbers
from the formula to their visual representations. Users can click the info
button to scroll to the corresponding section in the tutorial article, and
the play button to start the window sliding animation in (A)-(C).

light orange to dark orange color scale, which provides users with a
visual cue of the importance of every class. This view also includes a
corresponding equation, which explains how the classification score is
computed. When users enter this view, pairs of each logit circle and
its corresponding value in the equation appear sequentially with anima-
tions. As a user hovers over a logit circle, its value will be highlighted

in the equation along with the logit circle itself, so the user can under-
stand how each logit contributes to the softmax function. Hovering
over numbers in the equation will also highlight the appropriate logit
circles. Interacting with logit circles and the mathematical equation in
combination allows a user to discern the impact that every logit has on
the classification score in the output layer.

6.4 Transitions Between Views
The Overview is the starting state of CNN EXPLAINER and shows
the model architecture. From this high-level view, the user can begin
inspecting layers, connectivity, classifications, and tracing activations
of neurons through the model. When a user is interested in more detail,
they can click on neuron activation maps in the visualization. Neurons
in a layer that have simple one-to-one connections to a neuron in the
previous layer do not require an auxiliary Elastic Explanation View,
so upon clicking one of these neurons, a user will be able to enter
the Interactive Formula View to understand the low-level operation
that a tensor undergoes at that layer. If a neuron has more complex
connectivity, then the user will enter an Elastic Explanation View first.
In this view, CNN EXPLAINER uses visualizations and annotations
before displaying mathematics. Through further interaction, a user can
hover and click on parts of the Elastic Explanation View to uncover the
mathematical operations as well as examine the values of weights and
biases. The low-level Interactive Formula Views are only shown after
transitioning from the previous two views, so that users can learn about
the underlying mathemtical operations after hainvg a mental model of
the complex and layered CNN model structure.

6.5 Visualizations with Explanations
CNN EXPLAINER is accompanied by an interactive tutorial article
beneath the interface that explains CNN layer functions, hyperparam-
eters, and outlines CNN EXPLAINER’s interactive features. Learners
can read freely, or jump to specific sections by clicking layer names
or the info buttons (Fig. 6) from the main visualization. The article
provides beginner users detailed information regarding CNNs that can
supplement their exploration of the visualization.

Additionally, text annotations are placed
throughout the visualization (e.g., explaining the
flatten layer operation in the right image), which
further guide users and explain concepts that are
not easily discernible from the visualization alone.
These annotations help users map the underlying
algorithm to its visual encoding.

6.6 Customizable Visualizations
The Control Panel located across the top of the visualization (Fig. 1)
allows the user to alter the CNN input image and edit the overall repre-
sentation of the network. The Hyperparameter Widget (Fig. 7) enables
the user to experiment with differnt convolution hyperparameters.

Change input image. Users can choose
between (1) preloaded input images for each
output class, or (2) upload their own custom image. Preloaded im-
ages allow a user to easily access data from the classes the model
was originally trained on. User can also freely upload any image for
classification into the ten classes the network was trained on. CNN
EXPLAINER resizes a user’s image while preserving the aspect ratio
to fit one dimension of the model input size, and then crop the central
region if the other dimensions does not match. The fourth of six AV tool
engagement levels is allowing users to change the AV tool’s input [42].
Supporting custom image upload engages users, by allowing them to
analyze the network’s classification decisions and interactively testing
their own hypotheses on diverse image inputs.

Show network details. A user can toggle the
“Show detail” button, which displays additional net-
work specifications in the Overview. When toggled on, the Overview
will reveal layer dimensions and show color scale legends. Additionally,
a user can vary the activation map color scale range. The CNN architec-
ture presented by CNN EXPLAINER is grouped into four units and two
modules (Fig. 4). By modifying the drop-down menu in the Control
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Fig. 7. The Hyperparameter Widget, a component of the accompanying
interactive article, allows users to adjust hyperparameters and observe in
real time how the kernel’s sliding pattern changes in convolutional layers.

Panel, a user can adjust the color scale range used by the network to
investigate activations with different groupings.

Explore hyperparameter impact. The tutorial article (Sect. 6.5)
includes an interactive Hyperparameter Widget that allows users to
experiment with convolutional hyperparameters (Fig. 7). Users can
adjust the input and hyperparameters of the stand-alone visualization
to test how different hyperparameters change the sliding convolutional
kernel and the output’s dimensions. This interactive element empha-
sizes learning through experimentation by supplementing knowledge
gained from reading the article and using the main visualization.

6.7 Web-based, Open-sourced Implementation
CNN EXPLAINER is a web-based, open-sourced visualization tool
to teach students the foundations of CNNs. A new user only needs
a modern web-broswer to access our tool, no installation required.
Additionally, other datasets and linear models can be quickly applied
to our visualization system due to our robust implementation.

Model Training. The CNN architecture, Tiny VGG (Fig. 4), pre-
sented by CNN EXPLAINER for image classification is inspired by
both the popular deep learning architecture, VGGNet [49], and Stan-
ford’s CS231n course notes [31]. It is trained on the Tiny ImageNet
dataset [1]. The training dataset consists of 200 image classes and con-
tains 100,000 64×64 RGB images, while the validation dataset contains
10,000 images across the 200 image classes. The model is trained using
TensorFlow [4] on 10 handpicked, everyday classes: lifeboat , ladybug ,
bell pepper , pizza , school bus , koala , espresso , red panda , orange ,
and sport car . During the training process, the batch size and learning
rate are fine-tuned using a 5-fold-cross-validation scheme. This simple
model achieves a 70.8% top-1 accuracy on the validation dataset.

Front-end Visualization. CNN EXPLAINER loads the pre-trained
Tiny VGG model and computes forward propagation results in real time
in a user’s web browser using TensorFlow.js [51]. These results are
visualized using D3.js [6] throughout the multiple interactive views.

7 USAGE SCENARIOS

7.1 Beginner Learning Layer Connectivity
Janis is a virology researcher using CNNs in a current project. Through
an online deep learning course she has a general understanding of the
goals of applying CNNs, and some basic knowledge of different types
of CNN layers, but she needs help filling in some gaps in knowledge.
Interested in learning how a 3-dimensional input (RGB image) leads to
a 1-dimensional output (vector of class probabilities) in a CNN, Janis
begins exploring the architecture from the Overview (Fig. 5A).

After clicking the “Show detail” button, Janis notices that the
output layer is a 1-dimensional tensor of size 10, while max_pool_2,
the previous layer, is a 3-dimensional (13×13×10) tensor. Confused,
she hovers over a neuron in the output layer to inspect connections
between the final two layers of the architecture: the max_pool_2 layer
has 10 neurons; the output layer has 10 neurons each representing a
class label, and the output layer is fully-connected to the max_pool_2
layer. She clicks that output neuron, which transitions the Overview

(Fig. 5A) to the Flatten Elastic Explanation View (Fig. 5B). She notices
that edges between these two layers intersect a 1-dimensional flatten
layer and pass through a softmax function. By hovering over pixels
from the activation map, Janis understands how the 2-dimensional ma-
trix is “unwrapped” to yield a portion of the 1-dimensional flatten
layer. As she continues to follow the edge after the flatten layer, she
clicks the softmax button which leads her to the Softmax Interactive For-
mula View (Fig. 5C). She learns how the outputs of the flatten layer
are normalized by observing the equation linked with logits through an-
imations. Janis recognizes that her previous coursework has not taught
these “hidden” operations prior to the output layer, which flatten and
normalize the output of the max_pool_2 layer. Instead of searching
through lecture videos and textbooks, CNN EXPLAINER enables Janis
to learn these often-overlooked operations through a hierarchy of inter-
active views in a stand-alone website. She now feels more equipped to
apply CNNs to her virology research.

7.2 Teaching Through Interactive Experimentation
A university professor, Damian, is currently teaching a computer vision
class which covers CNNs. Damian begins his lecture with standard
slides. After describing the theory of convolutions, he opens CNN
EXPLAINER to demonstrate the convolution operation working inside a
full CNN for image classification. With CNN EXPLAINER projected to
the class, Damian transitions from the Overview (Fig. 1A) to the Con-
volutional Elastic Explanation View (Fig. 1B). Damian encourages the
class to interpret the sliding window animation (Fig. 2B) as it generates
several intermediate results. He then asks the class to predict kernel
weights in a specific neuron. To test student’s hypotheses, Damian
enters the Convolutional Interactive Formula View (Fig. 1C), to display
the convolution operation with the true kernel weights. In this view, he
can hover over the input and output matrices to answer questions from
the class, and display computations behind the operation.

Recalled from theory, a student asks a question regarding the impact
of altering the stride hyperparameter on the animated sliding window
in convolutional layers. To illustrate the impact of alternative hyperpa-
rameters, Damian scrolls down to the “Convolutional Layer” section of
the complementary article, where he experiments by adjusting stride
and other hyperparameters with the Hyperparameter Widget (Fig. 7) in
front of the class. CNN EXPLAINER is the first software that allows
Damian to explain convolutional operations and hyperparameters with
real image inputs, and quickly answer students’ questions in class. Pre-
viously, Damian had to draw illustrations with simple matrix inputs on
slides or a chalkboard. Finally, to reinforce the concepts and encourage
individual experimentation, Damian provides the class with a URL to
the web-based CNN EXPLAINER for students to return to in the future.

8 OBSERVATIONAL STUDY

We conducted an observational study to investigate how CNN EX-
PLAINER’s target users (e.g., aspiring deep learning students) would
use this tool to learn about CNNs, and also to test the tool’s usability.

8.1 Participants
CNN EXPLAINER is designed for deep learning beginners who are
interested in learning CNNs. In this study, we aimed to recruit partic-
ipants who aspire to learn about CNNs and have some knowledge of
basic machine learning concepts (e.g., knowing what an image classi-
fier is). We recruited 16 student participants from a large university (4
female, 12 male) through internal mailing lists (e.g., machine learning
and computer science Ph.D., M.S., and undergraduate students). Seven
participants were Ph.D. students, seven were M.S. students, and the
other two were undergraduates. All participants were interested in
learning CNNs, and none of them had known CNN EXPLAINER be-
fore. Participants self-reported their level of knowledge on non-neural
network machine learning techniques, with an average score of 3.26 on
a scale of 0 to 5 (0 being “no knowledge” and 5 being “expert”); and an
average score of 2.06 on CNNs (on the same scale). No participant self-
reported a score of 5 for their knowledge on CNNs, and one participant
had a score of 0. To help better organize our discussion, we refer to
participants with CNN knowledge score of 0, 1 or 2 as B1-B11, where
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Fig. 8. Average ratings from 16 participants regarding the usability
and usefulness of CNN EXPLAINER. Top: Participants thought CNN
EXPLAINER was easy to use, enjoyable, and helped them learn about
CNNs. Bottom: All features, especially animations, were rated favorably.

“B” stands for “Beginner”; and those with score of 3 or 4 as K1-K5,
where “K” stands for “Knowledgeable.”

8.2 Procedure
We conducted this study with participants one-on-one via video-
conferencing software. With the permission of all participants, we
recorded the participants’ audio and computer screen for subsequent
analysis. After participants signed consent forms, we provided them
a 5-minute overview of CNNs, followed by a 3-minute tutorial of
CNN EXPLAINER. Participants then freely explored our tool in their
computer’s web browser. We also provided a feature checklist, which
outlined the main features of our tool and encouraged participants to
try as many features as they could. During the study, participants were
asked to think aloud and share their computer screen with us; they
were encouraged to ask questions when necessary. Each session ended
with a usability questionnaire coupled with an exit interview that asked
participants about their process of using CNN EXPLAINER, and if this
tool could be helpful for them. Each study lasted around 50 minutes,
and we compensated each participant with a $10 Amazon Gift card.

8.3 Results and Design Lessons
The exit questionnaire included a series of 7-point Likert-scale ques-
tions about the utility and usefulness of different views in CNN EX-
PLAINER (Fig. 8). All average Likert rating were above 6 except the
rating of “easy to understand”. From the high ratings and our observa-
tions, participants found our tool easy to use and understand, retained
a high engagement level during their session, and eventually gained a
better understanding of CNN concepts. Our observations also reflect
key findings in previous AV research [13, 32]. This section describes
design lessons and limitations of our tool distilled from this study.

8.3.1 Transitions between different views
Transitions help users link CNN operations and structures. Several
participants (9/16) commented that they liked how our tool transitions
between high-level CNN structure views and low-level mathematical
explanations. It helps them better understand the interplay between
layer computations and the overall CNN data transformation—one of
the key challenges for understanding CNN concepts, as we identified
from our instructor interviews and our student survey. For example,
initially K4 was confused to see the Convolutional Elastic Explanation
View, but after reading the annotation text, he remarked, “Oh, I under-
stand what an intermediate layer is now—you run the convolution on

the image, then you add all those results to get this.” After exploring
the Convolutional Interactive Formula View, he immediately noted,
“Every single aspect of the convolution layer is shown here. [This] is
super helpful.” Similarly, B5 commented, “Good to see the big picture
at once and the transition to different views [...] I like that I can hide
details of a unit in a compact way and expand it when [needed].”

CNN EXPLAINER employs the fisheye view technique for present-
ing the Elastic Explanation Views (Fig. 1B, Fig. 5B): after transitioning
from the Overview to a specific layer, neighboring layers are still shown
while further layers (lower degree-of-interest) have lower opacity. Par-
ticipants found this transition design helpful for them to learn layer-
specific details while having CNN structural context in the background.
For instance, K5 said “I can focus on the current layer but still know
the same operation goes on for other layers.” Our observations from
this study suggest that our fluid transition design between different
level of abstraction can help users to better connect unfamiliar layer
mechanisms to the complex model structure.

8.3.2 Animations for enjoyable learning experience
Another favorite feature of CNN EXPLAINER that participants men-
tioned was the use of animations, which received the highest rating
in the exit questionnaire (Fig. 8). In our tool, animations serve two
purposes: to assimilate the relationship between different visual com-
ponents and to help illustrate the model’s underlying operations.

Transition animations help navigating. Layer movement is ani-
mated during view transitions. We noticed it helped participants to
be aware of different views, and all participants navigated through the
views naturally. In addition to assisting with understanding the rela-
tionship between distinct views, animation also helped them discover
the linking between different visualization elements. For example, B8
quickly found that the logit circle is linked to its corresponding value
in the formula, when she saw the circle-number pair appear one-by-one
with animation in the Softmax Interactive Formula View (Fig. 5C).

Algorithm animations contribute to understanding. Animations
that simulate the model’s inner-workings helped participants learn
underlying operations by validating their hypotheses. In the Convolu-
tional Elastic Explanation View (Fig. 2B), we animate a small rectangle
sliding through one matrix to mimic the CNN’s internal sliding win-
dow. We noticed many participants had their attention drawn to this
animation when they first transitioned into the Convolutional Elastic
Explanation View. However, they did not report that they understood
the convolution operation until interacting with other features, such
as reading the annotation text or transitioning to the Convolutional
Interactive Formula View (Fig. 2C). Some participants went back to
watch the animation multiple times and commented that it made sense,
for example, K5 said “Very helpful to see how the image builds as the
window slides through,” but others, such as B9 remarked, “It is not easy
to understand [convolution] using only animation.” Therefore, we hy-
pothesize that this animation can indirectly help users to learn about the
convolution algorithm by validating their newly formed mental models
of how specific operation behave. To test this hypothesis, a rigorous
controlled experiment would be needed. Related research work on
the effect of animation in computer science education also found that
algorithm animation does not automatically improve learning, but it
may lead learners to make predictions of the algorithm behavior which
in turn helps learning [8].

Animations improve learning engagement and enjoyment. We
found animations helped to increase participants’ engagement level
(e.g., spending more time and effort) and made CNN EXPLAINER more
enjoyable to use. In the study, many participants repeatedly played and
viewed different animations. For example, K2 replayed the window
sliding animation multiple times: “The is very well-animated [...] I
always love smooth animations.” B7 also attributed animations to his
enjoyable experience with our tool: “[The tool is] enjoyable to use [...]
I especially like the lovely animation.”

8.3.3 Engaging learning through visualization customization
CNN EXPLAINER allows users to modify the visualization. For exam-
ple, users can change the input image or upload their own image for
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Fig. 7. The Hyperparameter Widget, a component of the accompanying
interactive article, allows users to adjust hyperparameters and observe in
real time how the kernel’s sliding pattern changes in convolutional layers.

Panel, a user can adjust the color scale range used by the network to
investigate activations with different groupings.

Explore hyperparameter impact. The tutorial article (Sect. 6.5)
includes an interactive Hyperparameter Widget that allows users to
experiment with convolutional hyperparameters (Fig. 7). Users can
adjust the input and hyperparameters of the stand-alone visualization
to test how different hyperparameters change the sliding convolutional
kernel and the output’s dimensions. This interactive element empha-
sizes learning through experimentation by supplementing knowledge
gained from reading the article and using the main visualization.

6.7 Web-based, Open-sourced Implementation
CNN EXPLAINER is a web-based, open-sourced visualization tool
to teach students the foundations of CNNs. A new user only needs
a modern web-broswer to access our tool, no installation required.
Additionally, other datasets and linear models can be quickly applied
to our visualization system due to our robust implementation.

Model Training. The CNN architecture, Tiny VGG (Fig. 4), pre-
sented by CNN EXPLAINER for image classification is inspired by
both the popular deep learning architecture, VGGNet [49], and Stan-
ford’s CS231n course notes [31]. It is trained on the Tiny ImageNet
dataset [1]. The training dataset consists of 200 image classes and con-
tains 100,000 64×64 RGB images, while the validation dataset contains
10,000 images across the 200 image classes. The model is trained using
TensorFlow [4] on 10 handpicked, everyday classes: lifeboat , ladybug ,
bell pepper , pizza , school bus , koala , espresso , red panda , orange ,
and sport car . During the training process, the batch size and learning
rate are fine-tuned using a 5-fold-cross-validation scheme. This simple
model achieves a 70.8% top-1 accuracy on the validation dataset.

Front-end Visualization. CNN EXPLAINER loads the pre-trained
Tiny VGG model and computes forward propagation results in real time
in a user’s web browser using TensorFlow.js [51]. These results are
visualized using D3.js [6] throughout the multiple interactive views.

7 USAGE SCENARIOS

7.1 Beginner Learning Layer Connectivity
Janis is a virology researcher using CNNs in a current project. Through
an online deep learning course she has a general understanding of the
goals of applying CNNs, and some basic knowledge of different types
of CNN layers, but she needs help filling in some gaps in knowledge.
Interested in learning how a 3-dimensional input (RGB image) leads to
a 1-dimensional output (vector of class probabilities) in a CNN, Janis
begins exploring the architecture from the Overview (Fig. 5A).

After clicking the “Show detail” button, Janis notices that the
output layer is a 1-dimensional tensor of size 10, while max_pool_2,
the previous layer, is a 3-dimensional (13×13×10) tensor. Confused,
she hovers over a neuron in the output layer to inspect connections
between the final two layers of the architecture: the max_pool_2 layer
has 10 neurons; the output layer has 10 neurons each representing a
class label, and the output layer is fully-connected to the max_pool_2
layer. She clicks that output neuron, which transitions the Overview

(Fig. 5A) to the Flatten Elastic Explanation View (Fig. 5B). She notices
that edges between these two layers intersect a 1-dimensional flatten
layer and pass through a softmax function. By hovering over pixels
from the activation map, Janis understands how the 2-dimensional ma-
trix is “unwrapped” to yield a portion of the 1-dimensional flatten
layer. As she continues to follow the edge after the flatten layer, she
clicks the softmax button which leads her to the Softmax Interactive For-
mula View (Fig. 5C). She learns how the outputs of the flatten layer
are normalized by observing the equation linked with logits through an-
imations. Janis recognizes that her previous coursework has not taught
these “hidden” operations prior to the output layer, which flatten and
normalize the output of the max_pool_2 layer. Instead of searching
through lecture videos and textbooks, CNN EXPLAINER enables Janis
to learn these often-overlooked operations through a hierarchy of inter-
active views in a stand-alone website. She now feels more equipped to
apply CNNs to her virology research.

7.2 Teaching Through Interactive Experimentation
A university professor, Damian, is currently teaching a computer vision
class which covers CNNs. Damian begins his lecture with standard
slides. After describing the theory of convolutions, he opens CNN
EXPLAINER to demonstrate the convolution operation working inside a
full CNN for image classification. With CNN EXPLAINER projected to
the class, Damian transitions from the Overview (Fig. 1A) to the Con-
volutional Elastic Explanation View (Fig. 1B). Damian encourages the
class to interpret the sliding window animation (Fig. 2B) as it generates
several intermediate results. He then asks the class to predict kernel
weights in a specific neuron. To test student’s hypotheses, Damian
enters the Convolutional Interactive Formula View (Fig. 1C), to display
the convolution operation with the true kernel weights. In this view, he
can hover over the input and output matrices to answer questions from
the class, and display computations behind the operation.

Recalled from theory, a student asks a question regarding the impact
of altering the stride hyperparameter on the animated sliding window
in convolutional layers. To illustrate the impact of alternative hyperpa-
rameters, Damian scrolls down to the “Convolutional Layer” section of
the complementary article, where he experiments by adjusting stride
and other hyperparameters with the Hyperparameter Widget (Fig. 7) in
front of the class. CNN EXPLAINER is the first software that allows
Damian to explain convolutional operations and hyperparameters with
real image inputs, and quickly answer students’ questions in class. Pre-
viously, Damian had to draw illustrations with simple matrix inputs on
slides or a chalkboard. Finally, to reinforce the concepts and encourage
individual experimentation, Damian provides the class with a URL to
the web-based CNN EXPLAINER for students to return to in the future.

8 OBSERVATIONAL STUDY

We conducted an observational study to investigate how CNN EX-
PLAINER’s target users (e.g., aspiring deep learning students) would
use this tool to learn about CNNs, and also to test the tool’s usability.

8.1 Participants
CNN EXPLAINER is designed for deep learning beginners who are
interested in learning CNNs. In this study, we aimed to recruit partic-
ipants who aspire to learn about CNNs and have some knowledge of
basic machine learning concepts (e.g., knowing what an image classi-
fier is). We recruited 16 student participants from a large university (4
female, 12 male) through internal mailing lists (e.g., machine learning
and computer science Ph.D., M.S., and undergraduate students). Seven
participants were Ph.D. students, seven were M.S. students, and the
other two were undergraduates. All participants were interested in
learning CNNs, and none of them had known CNN EXPLAINER be-
fore. Participants self-reported their level of knowledge on non-neural
network machine learning techniques, with an average score of 3.26 on
a scale of 0 to 5 (0 being “no knowledge” and 5 being “expert”); and an
average score of 2.06 on CNNs (on the same scale). No participant self-
reported a score of 5 for their knowledge on CNNs, and one participant
had a score of 0. To help better organize our discussion, we refer to
participants with CNN knowledge score of 0, 1 or 2 as B1-B11, where

Overview
Elastic explanation view
Interactive formula view
Transition between views

Animations
Input customization

Tutorial article
Performance

not at all
useful

very
useful1 2 3 4 5 6 7

6.62
6.44
6.50
6.62
6.81
6.50
6.50
6.62

Easy to use
Easy to understand
Enjoyable to use

I will use it in the future
Helped me to learn

1 2 3 4 5 6 7
strongly
disagree

strongly
agree

Usefulness of Features

Usability Evaluation
6.25
5.94
6.88
6.37
6.37

Fig. 8. Average ratings from 16 participants regarding the usability
and usefulness of CNN EXPLAINER. Top: Participants thought CNN
EXPLAINER was easy to use, enjoyable, and helped them learn about
CNNs. Bottom: All features, especially animations, were rated favorably.

“B” stands for “Beginner”; and those with score of 3 or 4 as K1-K5,
where “K” stands for “Knowledgeable.”

8.2 Procedure
We conducted this study with participants one-on-one via video-
conferencing software. With the permission of all participants, we
recorded the participants’ audio and computer screen for subsequent
analysis. After participants signed consent forms, we provided them
a 5-minute overview of CNNs, followed by a 3-minute tutorial of
CNN EXPLAINER. Participants then freely explored our tool in their
computer’s web browser. We also provided a feature checklist, which
outlined the main features of our tool and encouraged participants to
try as many features as they could. During the study, participants were
asked to think aloud and share their computer screen with us; they
were encouraged to ask questions when necessary. Each session ended
with a usability questionnaire coupled with an exit interview that asked
participants about their process of using CNN EXPLAINER, and if this
tool could be helpful for them. Each study lasted around 50 minutes,
and we compensated each participant with a $10 Amazon Gift card.

8.3 Results and Design Lessons
The exit questionnaire included a series of 7-point Likert-scale ques-
tions about the utility and usefulness of different views in CNN EX-
PLAINER (Fig. 8). All average Likert rating were above 6 except the
rating of “easy to understand”. From the high ratings and our observa-
tions, participants found our tool easy to use and understand, retained
a high engagement level during their session, and eventually gained a
better understanding of CNN concepts. Our observations also reflect
key findings in previous AV research [13, 32]. This section describes
design lessons and limitations of our tool distilled from this study.

8.3.1 Transitions between different views
Transitions help users link CNN operations and structures. Several
participants (9/16) commented that they liked how our tool transitions
between high-level CNN structure views and low-level mathematical
explanations. It helps them better understand the interplay between
layer computations and the overall CNN data transformation—one of
the key challenges for understanding CNN concepts, as we identified
from our instructor interviews and our student survey. For example,
initially K4 was confused to see the Convolutional Elastic Explanation
View, but after reading the annotation text, he remarked, “Oh, I under-
stand what an intermediate layer is now—you run the convolution on

the image, then you add all those results to get this.” After exploring
the Convolutional Interactive Formula View, he immediately noted,
“Every single aspect of the convolution layer is shown here. [This] is
super helpful.” Similarly, B5 commented, “Good to see the big picture
at once and the transition to different views [...] I like that I can hide
details of a unit in a compact way and expand it when [needed].”

CNN EXPLAINER employs the fisheye view technique for present-
ing the Elastic Explanation Views (Fig. 1B, Fig. 5B): after transitioning
from the Overview to a specific layer, neighboring layers are still shown
while further layers (lower degree-of-interest) have lower opacity. Par-
ticipants found this transition design helpful for them to learn layer-
specific details while having CNN structural context in the background.
For instance, K5 said “I can focus on the current layer but still know
the same operation goes on for other layers.” Our observations from
this study suggest that our fluid transition design between different
level of abstraction can help users to better connect unfamiliar layer
mechanisms to the complex model structure.

8.3.2 Animations for enjoyable learning experience
Another favorite feature of CNN EXPLAINER that participants men-
tioned was the use of animations, which received the highest rating
in the exit questionnaire (Fig. 8). In our tool, animations serve two
purposes: to assimilate the relationship between different visual com-
ponents and to help illustrate the model’s underlying operations.

Transition animations help navigating. Layer movement is ani-
mated during view transitions. We noticed it helped participants to
be aware of different views, and all participants navigated through the
views naturally. In addition to assisting with understanding the rela-
tionship between distinct views, animation also helped them discover
the linking between different visualization elements. For example, B8
quickly found that the logit circle is linked to its corresponding value
in the formula, when she saw the circle-number pair appear one-by-one
with animation in the Softmax Interactive Formula View (Fig. 5C).

Algorithm animations contribute to understanding. Animations
that simulate the model’s inner-workings helped participants learn
underlying operations by validating their hypotheses. In the Convolu-
tional Elastic Explanation View (Fig. 2B), we animate a small rectangle
sliding through one matrix to mimic the CNN’s internal sliding win-
dow. We noticed many participants had their attention drawn to this
animation when they first transitioned into the Convolutional Elastic
Explanation View. However, they did not report that they understood
the convolution operation until interacting with other features, such
as reading the annotation text or transitioning to the Convolutional
Interactive Formula View (Fig. 2C). Some participants went back to
watch the animation multiple times and commented that it made sense,
for example, K5 said “Very helpful to see how the image builds as the
window slides through,” but others, such as B9 remarked, “It is not easy
to understand [convolution] using only animation.” Therefore, we hy-
pothesize that this animation can indirectly help users to learn about the
convolution algorithm by validating their newly formed mental models
of how specific operation behave. To test this hypothesis, a rigorous
controlled experiment would be needed. Related research work on
the effect of animation in computer science education also found that
algorithm animation does not automatically improve learning, but it
may lead learners to make predictions of the algorithm behavior which
in turn helps learning [8].

Animations improve learning engagement and enjoyment. We
found animations helped to increase participants’ engagement level
(e.g., spending more time and effort) and made CNN EXPLAINER more
enjoyable to use. In the study, many participants repeatedly played and
viewed different animations. For example, K2 replayed the window
sliding animation multiple times: “The is very well-animated [...] I
always love smooth animations.” B7 also attributed animations to his
enjoyable experience with our tool: “[The tool is] enjoyable to use [...]
I especially like the lovely animation.”

8.3.3 Engaging learning through visualization customization
CNN EXPLAINER allows users to modify the visualization. For exam-
ple, users can change the input image or upload their own image for
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classification; CNN EXPLAINER visualizes the new prediction with the
new activation maps in every layer. Similarly, users can interactively
explore how hyperparameters affect the convolution operation (Fig. 7).

Customization enables hypothesis testing. Many
participants used visualization customization to test their
predictions of model behaviors. For example, through
inspecting the input layer in the Overview, B4 learned
that the input layer comprised multiple different image
channels (e.g., red, green, and blue). He changed the input image to a
red bell pepper from Tiny Imagenet (shown on the right) and expected
to see high values in the input red channel: “If I click the red image, I
would see...” After the updated visualization showed what he predicted,
he said “Right, it makes sense.” We found the Hyperparameter Wid-
get also allowed participants to test their hypotheses. While reading
the description of convolution hyperparameters in the tutorial article,
K3 noted “Wait, then sometimes they won’t work”. He then modified
the hyperparatmeters in the Hyperparameter Widget and noticed some
combinations indeed did not yield a valid operation output: “It won’t
be able to slide, because the stride and kernel size don’t fit the matrix”.

Customization facilitates engagement. Participants
were intrigued to modify the visualization, and their en-
gagement sparked further interest in learning CNNs. In
the study, B6 spent a large amount of time on testing the
CNN’s behavior on edge cases by finding “difficult” im-
ages online. He searched with keywords “koala”, “koala
in a car”, “bell pepper pizza”, and eventually found a bell
pepper pizza photo (shown on the right3). Our CNN model predicted
the image as bell pepper with a probability of 0.71 and ladybug with a
probability of 0.2. He commented, “The model is not robust [...] oh, the
ladybug [’s high softmax score] might come from the red dot.” Another
participant B5 uploaded his own photo as a new input image for the
CNN model. After seeing his picture being classified as espresso , B5
started to use our tool to explore the reason of such classification by
tracking back activation maps. He also asked how do experts interpret
CNNs and said he would be interested in learning more about deep
learning interpretability. This observation reflects previous findings
that customizable visualization makes learning more engaging [13, 42].

8.3.4 Limitations

While we found CNN EXPLAINER provided participants with an en-
gaging and enjoyable learning experience and helped them to more
easily learn about CNNs, we also noticed some potential improvements
to our current system design from this study.

Beginners need more guidance. We found that participants with
less knowledge of CNNs needed more instructions to begin using CNN
EXPLAINER. Some participants reported that the visual representation
of the CNN and animation initially were not easy to understand, but
the tutorial article and text annotations greatly helped them to interpret
the visualizations. B8 skimmed through the tutorial article before
interacting with the main visualization. She said, “After going through
the article, I think I will be able to use the tool better [...] I think
the article is good, for beginner users especially.” B2 appreciated the
ability to jump to a certain section in the article by clicking the layer
name in the visualization, and he suggested us to “include a step-by-
step tutorial for first time users [...] There was too much information,
and I didn’t know where to click at the beginning”. Therefore, we
believe adding more text annotation and having a step-by-step tutorial
mode could help beginners better understand the relations between
CNN operations and their visual representations.

Limited explanation of why CNN works. Some participants, espe-
cially those less experienced with CNNs, were interested in learning
why the CNN architecture works in addition to learning how a CNN
model makes predictions. For example, B7 asked “Why do we need
ReLU?” when he was learning the formula of the ReLU function. B5
understood what a Max Pooling layer’s operation does but was unclear
why it contributes to CNN’s performance: “It is counter-intuitive that
Max Pooling reduces the [representation] size but makes the model

3Photo by Jennifer Laughlin, used with permission.

better.” Similarly, B6 commented on the Max Pooling layer: “Why not
take the minimum value? [...] I know how to compute them [layers],
but I don’t know why we compute them.” Even though it is still an open
question why CNNs work so well for various applications [17, 59],
there are some commonly accepted “intuitions” of how different layers
help this model class succeed. We briefly explain them in the tutorial
article: for example, ReLU function is used to introduce non-linearty in
the model. However, we believe it is worth designing visualizations that
help users to learn about these concepts. For example, allowing users
to change the ReLU activation function to a linear function, and then vi-
sualizing the new model predictions may help users gain understanding
of why non-linear activation functions are needed in CNNs.

9 DISCUSSION AND FUTURE WORK

Explaining training process and backpropagation. CNN EX-
PLAINER helps users to learn how a pre-trained CNN model transforms
the input image data into a class prediction. As we identified from
two preliminary studies and an observational study, students are also
interested in learning about the training process and backpropagation
of CNNs. We plan to work with instructors and students to design and
develop new visualizations to help beginners gain understanding of the
training process and backpropagation in detail.

Generalizing to other layer types and neural network models.
Our observational study demonstrated that CNN EXPLAINER helps
users more easily understand low-level layer operations, high-level
model structure, and their connections. We can adapt the Interactive
Formula Views to explain other layer types (e.g., Leaky ReLU [38])
or a combination of layers (e.g. Residual Block [21]). Similarly, the
transition between different levels of abstraction can be generalized to
other neural networks, such as long short-term memory networks [22]
and Transformer models [55] that require learners to understand the
intricate layer operations in the context of a complex network structure.

Integrating algorithm visualization best practices. Existing work
has studied how to design effective visualizations to help students learn
algorithms. CNN EXPLAINER applies two key design principles from
AV—visualizations with explanations and customizable visualizations
(G4). However, there are many other AV design practices that future
researchers can integrate in educational deep learning tools, such as
giving interactive “pop quizzes” during the visualization process [41]
and encouraging users to build their own visualizations [52].

Quantitative evaluation of educational effectiveness. We con-
ducted a qualitative observational study to evaluate the usefulness and
usability of CNN EXPLAINER. Further quantitative user studies would
help us investigate how visualization tools help users gain understand-
ing of deep learning concepts. We will draw inspiration from recent
research [11, 28] to assess users’ engagement level and content under-
standing through analysis of interaction logs.

10 CONCLUSION

As deep learning is increasingly used throughout our everyday life, it
is important to help learners take the first step toward understanding
this promising yet complex technology. In this work, we present CNN
EXPLAINER, an interactive visualization system designed for non-
experts to more easily learn about CNNs. Our tool runs in modern web
browsers and is open-sourced, broadening the public’s education access
to modern AI techniques. We discussed design lessons learned from
our iterative design process and an observational user study. We hope
our work will inspire further research and development of visualization
tools that help democratize and lower the barrier to understanding and
appropriately applying AI technologies.
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Velázquez-Iturbide. Exploring the Role of Visualization and Engage-
ment in Computer Science Education. SIGCSE Bull., 35(2):131–152, June
2002.

[43] A. P. Norton and Y. Qi. Adversarial-Playground: A visualization suite
showing how adversarial examples fool deep learning. In 2017 IEEE
Symposium on Visualization for Cyber Security (VizSec), pp. 1–4. IEEE,
Phoenix, AZ, USA, Oct. 2017.

[44] C. Olah. Neural Networks, Manifolds, and Topology, June 2014.
[45] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen,

Z. Lin, N. Gimelshein, L. Antiga, A. Desmaison, A. Kopf, E. Yang,
Z. DeVito, M. Raison, A. Tejani, S. Chilamkurthy, B. Steiner, L. Fang,
J. Bai, and S. Chintala. PyTorch: An imperative style, high-performance
deep learning library. In Advances in Neural Information Processing
Systems, pp. 8024–8035. 2019.

[46] N. Pezzotti, T. Hollt, J. Van Gemert, B. P. Lelieveldt, E. Eisemann, and
A. Vilanova. DeepEyes: Progressive Visual Analytics for Designing Deep
Neural Networks. IEEE Transactions on Visualization and Computer

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on November 24,2021 at 04:20:28 UTC from IEEE Xplore.  Restrictions apply. 



WANG ET AL.: CNN EXPLAINER: LEARNING CONVOLUTIONAL NEURAL NETWORKS WITH INTERACTIVE VISUALIZATION 1405

classification; CNN EXPLAINER visualizes the new prediction with the
new activation maps in every layer. Similarly, users can interactively
explore how hyperparameters affect the convolution operation (Fig. 7).

Customization enables hypothesis testing. Many
participants used visualization customization to test their
predictions of model behaviors. For example, through
inspecting the input layer in the Overview, B4 learned
that the input layer comprised multiple different image
channels (e.g., red, green, and blue). He changed the input image to a
red bell pepper from Tiny Imagenet (shown on the right) and expected
to see high values in the input red channel: “If I click the red image, I
would see...” After the updated visualization showed what he predicted,
he said “Right, it makes sense.” We found the Hyperparameter Wid-
get also allowed participants to test their hypotheses. While reading
the description of convolution hyperparameters in the tutorial article,
K3 noted “Wait, then sometimes they won’t work”. He then modified
the hyperparatmeters in the Hyperparameter Widget and noticed some
combinations indeed did not yield a valid operation output: “It won’t
be able to slide, because the stride and kernel size don’t fit the matrix”.

Customization facilitates engagement. Participants
were intrigued to modify the visualization, and their en-
gagement sparked further interest in learning CNNs. In
the study, B6 spent a large amount of time on testing the
CNN’s behavior on edge cases by finding “difficult” im-
ages online. He searched with keywords “koala”, “koala
in a car”, “bell pepper pizza”, and eventually found a bell
pepper pizza photo (shown on the right3). Our CNN model predicted
the image as bell pepper with a probability of 0.71 and ladybug with a
probability of 0.2. He commented, “The model is not robust [...] oh, the
ladybug [’s high softmax score] might come from the red dot.” Another
participant B5 uploaded his own photo as a new input image for the
CNN model. After seeing his picture being classified as espresso , B5
started to use our tool to explore the reason of such classification by
tracking back activation maps. He also asked how do experts interpret
CNNs and said he would be interested in learning more about deep
learning interpretability. This observation reflects previous findings
that customizable visualization makes learning more engaging [13, 42].

8.3.4 Limitations

While we found CNN EXPLAINER provided participants with an en-
gaging and enjoyable learning experience and helped them to more
easily learn about CNNs, we also noticed some potential improvements
to our current system design from this study.

Beginners need more guidance. We found that participants with
less knowledge of CNNs needed more instructions to begin using CNN
EXPLAINER. Some participants reported that the visual representation
of the CNN and animation initially were not easy to understand, but
the tutorial article and text annotations greatly helped them to interpret
the visualizations. B8 skimmed through the tutorial article before
interacting with the main visualization. She said, “After going through
the article, I think I will be able to use the tool better [...] I think
the article is good, for beginner users especially.” B2 appreciated the
ability to jump to a certain section in the article by clicking the layer
name in the visualization, and he suggested us to “include a step-by-
step tutorial for first time users [...] There was too much information,
and I didn’t know where to click at the beginning”. Therefore, we
believe adding more text annotation and having a step-by-step tutorial
mode could help beginners better understand the relations between
CNN operations and their visual representations.

Limited explanation of why CNN works. Some participants, espe-
cially those less experienced with CNNs, were interested in learning
why the CNN architecture works in addition to learning how a CNN
model makes predictions. For example, B7 asked “Why do we need
ReLU?” when he was learning the formula of the ReLU function. B5
understood what a Max Pooling layer’s operation does but was unclear
why it contributes to CNN’s performance: “It is counter-intuitive that
Max Pooling reduces the [representation] size but makes the model

3Photo by Jennifer Laughlin, used with permission.

better.” Similarly, B6 commented on the Max Pooling layer: “Why not
take the minimum value? [...] I know how to compute them [layers],
but I don’t know why we compute them.” Even though it is still an open
question why CNNs work so well for various applications [17, 59],
there are some commonly accepted “intuitions” of how different layers
help this model class succeed. We briefly explain them in the tutorial
article: for example, ReLU function is used to introduce non-linearty in
the model. However, we believe it is worth designing visualizations that
help users to learn about these concepts. For example, allowing users
to change the ReLU activation function to a linear function, and then vi-
sualizing the new model predictions may help users gain understanding
of why non-linear activation functions are needed in CNNs.

9 DISCUSSION AND FUTURE WORK

Explaining training process and backpropagation. CNN EX-
PLAINER helps users to learn how a pre-trained CNN model transforms
the input image data into a class prediction. As we identified from
two preliminary studies and an observational study, students are also
interested in learning about the training process and backpropagation
of CNNs. We plan to work with instructors and students to design and
develop new visualizations to help beginners gain understanding of the
training process and backpropagation in detail.

Generalizing to other layer types and neural network models.
Our observational study demonstrated that CNN EXPLAINER helps
users more easily understand low-level layer operations, high-level
model structure, and their connections. We can adapt the Interactive
Formula Views to explain other layer types (e.g., Leaky ReLU [38])
or a combination of layers (e.g. Residual Block [21]). Similarly, the
transition between different levels of abstraction can be generalized to
other neural networks, such as long short-term memory networks [22]
and Transformer models [55] that require learners to understand the
intricate layer operations in the context of a complex network structure.

Integrating algorithm visualization best practices. Existing work
has studied how to design effective visualizations to help students learn
algorithms. CNN EXPLAINER applies two key design principles from
AV—visualizations with explanations and customizable visualizations
(G4). However, there are many other AV design practices that future
researchers can integrate in educational deep learning tools, such as
giving interactive “pop quizzes” during the visualization process [41]
and encouraging users to build their own visualizations [52].

Quantitative evaluation of educational effectiveness. We con-
ducted a qualitative observational study to evaluate the usefulness and
usability of CNN EXPLAINER. Further quantitative user studies would
help us investigate how visualization tools help users gain understand-
ing of deep learning concepts. We will draw inspiration from recent
research [11, 28] to assess users’ engagement level and content under-
standing through analysis of interaction logs.

10 CONCLUSION

As deep learning is increasingly used throughout our everyday life, it
is important to help learners take the first step toward understanding
this promising yet complex technology. In this work, we present CNN
EXPLAINER, an interactive visualization system designed for non-
experts to more easily learn about CNNs. Our tool runs in modern web
browsers and is open-sourced, broadening the public’s education access
to modern AI techniques. We discussed design lessons learned from
our iterative design process and an observational user study. We hope
our work will inspire further research and development of visualization
tools that help democratize and lower the barrier to understanding and
appropriately applying AI technologies.
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[42] T. L. Naps, G. Rößling, V. Almstrum, W. Dann, R. Fleischer, C. Hund-
hausen, A. Korhonen, L. Malmi, M. McNally, S. Rodger, and J. Á.
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