
HAR: Hardness Aware Reweighting
for Imbalanced Datasets

Rahul Duggal
Georgia Institute of Technology

rahulduggal@gatech.edu

Scott Freitas
Georgia Institute of Technology

safreita@gatech.edu

Sunny Dhamnani
Georgia Institute of Technology

sdhamnani3@gatech.edu

Duen Horng Chau
Georgia Institute of Technology

polo@gatech.edu

Jimeng Sun
University of Illinois at Urbana Champaign

jimeng@illinois.edu

Abstract—Class imbalance is a significant issue that causes
neural networks to underfit to the rare classes. Traditional
mitigation strategies include loss reshaping and data resampling
which amount to increasing the loss contribution of minority
classes and decreasing the loss contributed by the majority ones.
However, by treating each example within a class equally, these
methods lead to undesirable scenarios where hard-to-classify
examples from the majority classes are down-weighted and easy-
to-classify examples from the minority classes are up-weighted.
We propose the Hardness Aware Reweighting (HAR) framework,
which circumvents this issue by increasing the loss contribution of
hard examples from both the majority and minority classes. This
is achieved by augmenting a neural network with intermediate
classifier branches to enable early-exiting during training. Ex-
perimental results on large-scale datasets demonstrate that HAR
consistently improves state-of-the-art accuracy while saving up
to 20% of inference FLOPS.

Index Terms—Class imbalance, neural networks, hardness,
reweighting

I. INTRODUCTION

Class imbalance is a ubiquitous phenomenon commonly
observed in naturally occurring data distributions [1]–[3].
However, despite it’s ubiquity, popular datasets (e.g., CIFAR-
10/100 [4], ImageNet [5]) are often artificially balanced leading
to a mismatch between reality and practice. Realizing this
mismatch, recent research aims to account for class imbalance
by evolving the traditional datasets to their long-tailed (LT)
versions, e.g., CIFAR LT [6], ImageNet LT [7]. Here, a long
tail signifies that the majority of the classes constitute only a
minority of the overall data and vice versa. Our work focuses
on training accurate neural networks on datasets exhibiting a
long-tail class imbalance.

Overcoming a long tail imbalance is hard, since most
classifiers tend to favor the majority classes that constitute
the bulk of the training set [1], [8]. This is especially true
for convolutional neural networks (CNNs), which are known
to suffer under class imbalance [9]. An effective mitigating
strategy is loss reweighting, which follows the simple rule:
increase the loss contributed by the minority classes, and

decrease the loss contributed by the majority ones. This
idea is realized in popular reweighting methods, such as
class reweighting based on inverse frequency [10], [11],
inverse-square-root frequency [12] and the effective number of
samples [6]. These methods, however, uniformly reweight all
examples within each class, leading to the undesirable scenario
wherein hard-to-classify examples from the majority classes are
downweighted, and easy-to-classify examples from the minority
classes are upweighted. This is undesirable because hard
examples are known to provide stronger learning signals [13],
[14] and should avoid being downweighted.

One way to avoid the above scenario is to develop a more
fine-grained, instance-specific reweighting strategy. This is the
motivation behind recent methods that use meta-learning [15],
[16] and domain-adaptation [17]. However, these methods do
not encode the key notion of example hardness, which means
that hard examples are still susceptible to being downweighted,
causing their learning signals to be diminished [13], [14].
On the other end, classical hardness-aware methods such
as ADASYN [18] and SMOTEBoost [19] do not scale to
modern CNNs [9]. This presents a need for developing a
hardness-aware, instance-specific reweighting strategy suitable
for training deep neural networks.

We propose the Hardness Aware Reweighting (HAR) frame-
work that incorporates the notion of example hardness during
training. HAR is premised around the idea of increasing the
loss contribution of hard examples in both the majority and
minority classes. It augments a backbone neural network with
auxiliary classifier branches (illustrated in Fig. 1) which enable
the backbone to learn a notion of hardness by conditionally
exiting easy-to-classify examples during training. Once an
example exits, it no longer incurs additional loss. A natural
outcome of this process is that harder examples exit towards
the end and accumulate a higher overall loss, thus realizing
HAR’s goal.

A. Our Contributions

1. Example Hardness as Key to Unlock Generalization. We
contribute the key idea that accounting for example hardness978-1-6654-3902-2/21/$31.00 ©2021 IEEE

Easier
Harder

Easier
Harder

L(z(i), y)∑
i=1

5

HARL

HARHAR

=

Majority

Minority

cat-easyz(1)
dog-easyz(1)

CRW

Exit-1 Exit-2 Exit-3 Exit-4

Exit-5

L = L(z⁽¹⁾,y)

cat-medz(3)
dog-medz(3)

L = L(z⁽¹⁾,y) + L(z⁽²⁾,y) + L(z⁽³⁾,y)

...

CRW CRW CRW

CRW

CRW = Class re-weighting

Easiest Medium

Hardest

Fig. 1: Hardness Aware Reweighting (HAR) framework augments a backbone network with auxiliary classifier branches. During
training, an example accumulates loss at each branch, until either (a) it is confidently and correctly classified at a branch, or (b)
it reaches the end. A harder example exits later in the network and accumulate higher overall loss.

during class reweighting can improve accuracy of modern
CNNs trained under long-tail class imbalance. (Sec. III-A)

2. HAR: General Framework to Endow Hardness Aware-
ness. Our proposed HAR framework is a general approach to
endow any loss function with hardness awareness and offers
three benefits:
1) State-of-the-art Accuracy. By increasing the loss contri-

bution of hard examples, HAR shifts the focus of learning
to harder examples, leading to state-of-the-art accuracies on
standard, large-scale imbalanced benchmark datasets, such
as ImageNet LT [7] and iNaturalist ’18 [20]. (Sec. IV-D)

2) Compute Savings. HAR enables dynamic inference wherein
the inference cost of a model can be varied in realtime.
The blue dots (•) in the Fig. 2 plots a HAR model’s
accuracies at eight different compute budgets. The curve
formed envelopes all other approaches, showing that HAR
enables inference FLOPS savings while still achieving state-
of-the-art accuracy. (Sec. III-C)

3) Plug-and-play Support for Existing Loss functions. HAR
can endow any loss functions with hardness awareness by
using it at the auxiliary branches. We observe large accuracy
improvements when using the weighted cross-entropy [6]
or the weighted LDAM loss [21] at the exits. (Sec. III-B)

3. Extensive Evaluation on Large-scale Datasets. We com-
prehensively evaluate HAR using modern CNNs by training
them on four standard imbalanced benchmarks, including the
large-scale ImageNet LT [7] and iNaturalist ’18 [20] datasets.
Additionally, we ablate on the different modelling choices of
HAR to uncover why and how it leads to a higher accuracy
with compute savings. (Sec. IV-F)

Conceptually, HAR shares its motivation with the seminal
work of focal loss [22] which is the first to demonstrate the
benefit of enabling hardness awareness in the class imbalance

150k140k

45

44

46

47

48

49

50

51

52

160k 170k 180k 190k 200k 210k

51.051.051.050.950.8
50.6

50.1

49.3

To
p-
1
A
cc
ur
ac
y
(h
ig
he
ri
s
be
tte
r)

Tera Flops (lower is better)

HAR: HigherAccuracywith Less Compute

HAR(LDAM)+DRW

LDAM + DRW (48.8)
CE + DRW (48.5)

Focal + DRW (47.9)

CE (44.9)

Fig. 2: The HAR framework leads to higher top-1 accuracies
while saving compute, for a ResNet-50 model trained on the
ImageNet LT dataset. Additionally, HAR supports dynamic
inference that offers a favorable top-1 accuracy vs. efficiency
trade-off under different compute budgets (shown as blue dots
•). In contrast, traditional methods lead to static models with
fixed compute costs during inference.

setting. There are however two major differences: (1) focal
loss uses prediction confidence as a measure of hardness, while
HAR uses the idea of early exiting. This couples focal loss to
cross entropy, whereas HAR can work with many loss types; (2)
unlike HAR, focal loss cannot save compute on easy examples,
as early-exiting is not an option. Our experiments in Sec. IV
show that a model trained with HAR significantly outperforms

a model trained with focal loss.

II. RELATED RESEARCH

We summarize related works from three relevant areas: class
imbalance, hardness aware learning, and multi-branch neural
networks.

A. Overcoming class imbalance

The techniques for overcoming class imbalance techniques
fall into the following three categories.
Loss rebalancing: These methods reweight the loss contribu-
tion of each example such that the loss for minority classes is
upweighted, while that of the majority classes is downweighted.
The weighting scheme itself can be uniform across all the
examples within a class [6], [23] or can be more fine-grained
i.e.,specific to each example in consideration [15]–[17], [22].
The uniform reweighting techniques include reweighting based
on inverse class frequency [6], [23] or based on the effective
number of samples in each class [6]. On the other hand, fine-
grained approaches include Focal loss [22], which reweights
based on sample hardness or recent studies [15]–[17] that
employ meta-learning to perform sample reweighting.
Data resampling: These methods either repeatedly sample
examples from the minority class (over-sampling) [18], [24]–
[26] or discard samples from the majority class (under-
sampling) [27]–[30]. Popular strategies include SMOTE that
over-samples the minority class through linear interpolation
[24]; or [27] that under-samples the majority class by clustering
and replacing the majority class examples by a few anchor
points. With neural networks, over-sampling generally creates
redundancy and risks over-fitting to the rare classes, while,
under-sampling is susceptible to losing information from the
majority classes [9].
Training strategies: These methods modify the training proce-
dure to mitigate the problem of class imbalance. For instance,
LDAM [21], introduces a delayed reweighting scheme wherein,
class reweighting is applied after a few epochs of training.
Kang et al. [7] show improvement through a two-step training
process which decouples representation and classifier learning.
Recently, BBN [31] show that gradually shifting emphasis from
class sampling to reverse sampling helps improve accuracy.
HAR is complementary to the above three directions in that it
introduces a hardness aware learning framework that readily
works with many existing loss reweighting and training
strategies to further improve accuracy on imbalanced datasets.

B. Hardness aware learning methods

The concept of example hardness is central to a variety of
successful learning techniques including those from curriculum
learning [32], [33] (which deals with ordering the training set in
increasing order of hardness), hard negative mining [13], [22],
[34] (which deals with identifying false positive samples in
order to improve classification performance) and reinforcement
learning [35], [36] (which deals with ordering tasks from easy
to hard in order to aid an agent’s learning). The underlying as-
sumption in these methods is that “harder examples” contribute

a stronger learning signal and are more informative than their
“easier” counterparts [13], [14]. To this end, example hardness
can be defined in multiple ways. For example, OHEM [34] uses
absolute loss as an indicator of hardness; focal loss [22] uses the
prediction-confidence of true class probability as a measure of
hardness; Hacohen et. al. [33] use the prediction-confidence of a
pre-trained teacher model as the measure of hardness. Differing
from these, HAR uses a more general hardness measure which
embodies the intuition that easy examples are those which can
be confidently and correctly predicted using coarse-features
from earlier layers of a neural network. This enables HAR to
impart hardness awareness to many existing loss functions.

C. Multi-branch neural networks

Research in this area aims to endow a neural network
with auxiliary classifier branches (or early-exits) that allow
for obtaining predictions from intermediate locations along
the backbone DNN. This leads to advantages such as, saving
inference time compute [37]–[39]; mitigating the vanishing
gradient problem as in Inception networks [40]; while also
affording a natural application to computing paradigms such
as fog computing and 5G [41], [42]. The important research
challenges for multi-branch DNNs (see review paper [43])
stem from questions such as: where to place the early-exits,
what criterion to use for early-exiting and how to define the
training objective. Many works place the early-exits after
each block of layers which enables large savings of inference
FLOPS [37]–[39]. The exit criteria range from early-exiting
based on low entropy predictions as in BranchyNet [44] to early
exiting based on prediction confidence as in MSDNet [37].
Training objectives include ones that distill knowledge from
later exits to earlier ones [38], [45] or ensemble predictions
from multiple branches to improve adversarial robustness [39].
To the best of our knowledge, HAR is the first to use multi-
branch DNNs to enable hardness-aware loss reweighting for
long-tailed imbalance. Our experiments show this leads to large
accuracy improvement in the presence of class imbalance.

III. METHODOLOGY

A. Why care about hardness?

We hypothesize that within both the majority and minority
classes some examples are easier to classify than others.
Consequently, not every example in the minority class needs to
be equally upweighted; and not every example in the majority
class needs to be equally downweighted. In order to verify
this hypothesis, we train a ResNet-32 model on CIFAR-10 LT
(using vanilla cross entropy) and determine: What proportion
of the rarest class examples obtain a high confidence prediction
(≥ 0.9) and what proportion of the majority class examples
obtain a low confidence prediction (≤0.1). Fig. 3 plots outcome
of this experiment.

As expected, many examples from the minority class are
classified with low confidence while many examples from
the majority class are predicted with near certainty. However,
confirming our hypothesis, a considerable proportion of the
majority class examples obtain a low confidence prediction

EasierHarder

P
ro
po
rti
on
of
ex
am
pl
es

Model confidence
0
0

0.2

.05

.10

.15

.20

0.4 0.6 0.8 1

Minority
Class

Majority
Class

Fig. 3: Observe that a considerable proportion of the majority
class examples predicted by a ResNet-32 trained on CIFAR-10
LT using cross entropy, obtain a low confidence prediction
and vice versa. It is precisely this subset of examples—low
confidence majority and high confidence minority—that HAR
impacts the most. Particularly, HAR increases the loss contri-
bution of low confidence majority examples while retaining
the original loss contribution for high confidence minority.

and vice versa. It is precisely this subset of examples—low
confidence majority and high confidence minority—that HAR
impacts the most. In particular, HAR increases the loss contri-
bution of low confidence majority examples while retaining the
original loss contribution for high confidence minority examples
thereby enabling a fine-grained, hardness aware approach to
loss reweighting.

Problem Setup. Denote a multi-exit neural network by f :
XXX → zzz that maps an input example XXX ∈ Rh×w×3 to a list of
prediction vectors zzz = [zzz(1), ..., zzz(k)] where the vector zzz(k) ∈
Rc specifies the prediction confidence over c classes at the kth

exit. Assuming the weights θθθ(k) parameterize f up to exit k,
then we have zzz(k) = f(XXX;θθθ(k)) as the output at the kth exit.
The supervised learning task specifies training f on a training
dataset D = {(XXX1, y1), ..., (XXXn, yn)} containing c classes. If
nj denotes the number of training examples in class j, then
a long tail dataset satisfies ni > nj ,∀i < j and n1 >> nc.
Typically, post training, f is evaluated on a balanced test set
D′ which satisfies n′i = n′j ,∀i, j. The goal of imbalanced
classification is to maximize an evaluation metric such as top-1
accuracy on D′ while learning a classifier on D.

B. Training a multi-branch DNN with HAR

1) Preliminaries: Training algorithms for multi-branch
neural networks come in many shapes and forms. The most
popular ones [37], [39], [44], [46], [47] train all branches
simultaneously by defining a single training objective that
incorporates the predictions from all intermediate branches.
One way to accomplish this [37], [44], [46] is to define the
aggregated loss as a weighted sum of the loss computed at
each exit

Lmulti−exit(zzzi, yi) =
K∑
k=1

αkL(zzz(k)i , yi), (1)

where zzzi = [zzz
(1)
i ; ..., zzz

(K)
i] is the list of predictions from K

branches, αkare positive constants, and L is a classification
loss such as the cross-entropy. Another strategy [47] is to first
combine the prediction vectors at each branch

ẑzzi =

K∑
k=1

αkzzz
(k)
i , (2)

and then obtain the training loss as Lmulti−exit(zzzi, yi) =
L(ẑzz, yi). Among these two approaches, HAR’s training ob-
jective is inspired from the former (i.e.,Eq. 1).

2) General HAR loss: The goal of the HAR training objective
is to up weight the loss contribution of hard examples.
To this end, we modify Eq. (1) in two ways. First, we
simplify the hyperparameter design space by setting αk = 1
(thus weighing all branches equally). Second, we introduce
conditional aggregation into the summation term on the right
hand side with the general idea: to aggregate the loss up until
the first exit where the neural network correctly and confidently
predicts the class of an input example. This objective is defined
as

LHAR(zzzi, yi) =
∑

k∈[1,...,ki]

L
(
zzz
(k)
i , yi

)
,

where ki = argmin
j∈{1,2,...,K}

(
g
(j)
i > 0

)
.

(3)

Here g(j)i defines the early exiting criterion for example i at
exit j and is defined as below

g
(j)
i =

{
1, if argmax(zzz

(j)
i) = yi and zzz(j)i [yi] > t

0, otherwise
(4)

The sum in Eq.(3) means that an example XXXi accumulates
an exit loss L

(
zzz
(k)
i , yi

)
up to the first exit ki where it exits

by satisfying the exit criterion of Eq. (4). Further, the exit
criterion of Eq. (4) is satisfied (i.e.,outputs a 1) only when the
prediction at exit k is both: correct (i.e.,argmax(zzz

(j)
i) = yi)

and confident (i.e.,zzz(j)i [yi] > t). Thus viewed together, Eqs. (3)
and (4) ensure that hard examples exit later by virtue of which,
encumber a larger loss.

3) Instantiating the HAR loss: The HAR training objective
of Eq.(3) is agnostic to the exact instantiation of L at branch
k. In particular, L can be any loss function useful for class
imbalance, including: weighted cross-entropy [6], Focal loss
[22], LDAM loss [21] or any combination thereof. We conduct
experiments with both weighted cross entropy and the recently
proposed LDAM loss as the exit loss type.

When using the class weighted cross-entropy at each exit,
the HAR training objective is described as follows

LCEHAR(zzzi, yi) =
∑

k∈[1,...,ki]

wwwyi log

(
exp(zzz

(k)
i [yi])∑C

j=1 exp(zzz
(k)
i [j])

)
,

(5)
wherewwwyi refers to the class specific weight, which according to
prior work, can be set based on the inverse class frequency [10],
[11], inverse square root frequency [12], [48] or the effective

0

4

8

12

16

20

Exit 1 Exit 2 Exit 3 Exit 4 Exit 5

ResNet-32 on CIFAR-10

Av
er
ag
e
lo
ss
pe
re
xa
m
pl
e

ResNet-32 on CIFAR-100
ResNet-50 on ImageNet-LT

Fig. 4: On multiple models (ResNet-32/50) and datasets
(CIFAR LT/ImageNet LT) we observe that examples exiting
later indeed contribute a higher average loss per sample. This
figure empirically validates Property 1.

weighting [6] strategies. This work leverages the weighting
strategy from [6] which sets wwwc = 1−β

1−βnc , where nc is the
number of samples in class c and β is a hyperparameter with
typical values in {0.999, 0.9999}.

When using LDAM [21] at each exit, the HAR loss is
described as

LLDAMHAR (zzzi, yi) =
∑

k∈[1,...,ki]

wwwyi log
(
ppp
(k)
i

)
where, ppp(k)i =

exp(zzz
(k)
i [yi]−4yi)

exp(zzz
(k)
i [yi]−4yi) +

∑
j 6=yi exp(zzz

(k)
i [j])

and 4yi =
C

nyi
(6)

The quantity 4yi defines a per-class margin that ensures rare
classes get a larger margin. It is determined by a hyperparameter
C and the number of examples nyi in class yi. Following [21],
we select C such that the largest margin for any class is 0.5.

4) Outcome of training with the HAR loss: The intended
goal of HAR loss is to increase the loss contribution of hard
examples. This is formally stated in the following property.

Property 1: (Increasing Loss Property) For a multi-exit
neural network f , if Dk denotes the set of examples exit-
ing at exit k then, ∀i < j, E(zzzm,ym)∈Di

[LHAR(zzzm, ym)] <

E(zzzm,ym)∈Dj
[LHAR(zzzm, ym)].

The above property simply states that the average training
loss for examples exiting at exit i, monotonically increases
across exits. This enables the neural network to focus on harder
examples (which contribute a higher expected loss) from both
the minority and majority classes. To empirically validate this
property, in Fig. 4, we plot the average training loss contributed
by examples exiting at each auxiliary branch for ResNet-32
and ResNet-50 models trained with LCEHAR in Eq. 5, on the
CIFAR-10/100 and ImageNet LT datasets. The increasing trend
of average loss across exits indeed validates that examples
exiting later do contribute a higher loss.

C. Inference in multi-branch neural networks

1) Preliminaries: During inference, the outputs of a multi-
branch DNN can be aggregated into a single prediction vector
in several ways. The popular choices include (1) Inception
networks [40] which discard the branch predictions and use
only the backbone output as the overall prediction, (2) Hu
et al. [39] which uses the mean of all branch outputs as the
overall prediction or (3) MSDNet [37] which selects a branch
based on prediction confidence, whose output is chosen as the
overall prediction. With HAR, a model can support two modes
of inference corresponding to choices (1) and (3) above. We
term (1) as the static mode and (3) as the dynamic mode. The
next subsection dives deeper into the dynamic mode.

2) Dynamic inference with HAR: Similar to MSDNet [37],
HAR selects a branch (based on prediction confidence), who’s
output is designated as the network prediction. More formally,
given the multi-branch prediction zzzi = [zzz

(1)
i , ..., zzz

(K)
i] for an

input XXXi, the overall prediction ẑzzi of the network is

ẑzzi = zzz
(ki)
i , where ki = argmin

j∈{1,...,K}

(
h
(j)
i > 0

)
, (7)

where h(j)i is the prediction confidence for example i at exit j

h
(j)
i =

{
1, if argmax(zzz

(j)
i) > s

0, otherwise
(8)

Intuitively, Eq. 7 specifies the overall network prediction as
the output of the earliest exit where the exit-criterion of Eq. 8
is satisfied. Further, the exit criterion of Eq. 8 is satisfied when
the prediction confidence (returned by the argmax) exceeds a
predefined threshold s. Thus, the dynamicity during inference
arises out of varying the value of s which affects the exit
criterion in the following way: a lower value of s leads to a
relaxed version of hardness, and thus more early exiting. Or
in other words, s is a control knob for dynamically controlling
the inference FLOPS of a network.

IV. EXPERIMENTS

In this section, we begin by discussing the experimental setup
including: (i) datasets, (ii) evaluation metrics (iii) backbone
models and training hyperparameters, (iv) training configu-
rations, and (v) hyperparameter search. Following this, we
answer the following three questions:

1) Does HAR benefit in both modes of inference? (Sec. IV-C)
2) How does HAR compare to the state of the art? (Sec. IV-D)
3) What is the class-composition of early exiting examples

in the dynamic mode? (Sec. IV-E)
Finally, we end the section with an ablation study on different
modelling choices of HAR (Sec. IV-F).

A. Experimental Setup

Datasets. We conduct our evaluation on four long-tailed
datasets: CIFAR-10 LT, CIFAR-100 LT [6], ImageNet LT [2]
and iNaturalist’18 [20]. For the first three datasets (CIFAR

LT & ImageNet LT), the training split is obtained by sub-
sampling from their balanced versions. In case of the CIFAR
LT datasets, we consider three levels of imbalance, 10×,
50× and 100×, which is defined as the ratio between the
number of samples in the largest and the smallest classes.
The ImageNet LT training split consists of 115.8k images
from 1,000 classes with largest and smallest classes containing
1,280 and 5 images respectively. The iNaturalist’18 dataset
is a naturally imbalanced dataset containing 437,513 training
images from 8,142 species of plants and animals. For the
ImageNet LT and iNaturalist datasets, similar to [7] we present
results on the many-shot (classes containing >100 examples),
medium-shot (classes containing 20-100 examples), and few-
shot (classes containing <20 examples) splits. Please refer to
Appendix A for additional details on the dataset construction.

Evaluation Metrics. We follow the same evaluation setting as
recent methods [6], [7], [21], [31]. For all datasets, the training
split is imbalanced (See appendex A) while the validation and
test splits are balanced. The top1 accuracy on the test split
serves as the common metric of comparison across all datasets.

Backbone models & training configurations. We consider
several models from the ResNet and DenseNet families. To
obtain an augmented HAR model, we attach auxiliary classifier
branches before each residual/dense block (see Appendix B for
details). On CIFAR datasets, we train the augmented ResNet-32
models for 200 epochs using SGD with an initial learning rate
of 0.1 decreased by 0.01 at epochs 160 and 180 [6], [21]. The
weight decay is 2× 10−4. On ImageNet LT and iNaturalist’18
we train the augmented ResNet-50 and DenseNet-169 models
for 100 epochs using SGD with an initial learning rate of 0.1
decreased by 0.1 at epochs 60 and 80. The weight decay is
2×10−4. Similar to [6], [21], all models use a linear warm-up
schedule for the first 5 epochs to avoid initial over-fitting.

Implementation. HAR is constructed from three key
components—(1) an exit loss function, (2) a class reweighting
strategy, and (3) a reweighting schedule. For the exit loss, we
consider two variations with HAR—at each exit we use either
cross entropy loss (CE) or label distribution aware margin loss
(LDAM) [21]. These are referred to as HAR(CE) and HAR(LDAM).
For class reweighting, we weight each example of class c
according to it’s effective number 1−β

1−βnc , where nc is the
number of images in class c [6]. Finally, for the reweighting
schedule we use the per-dataset delayed reweighting (DRW)
scheme introduced in [21]. All experiments are conducted on
a system with four V100 GPUs and 512GB of RAM.

Baselines. To measure the performance of HAR, we compare
against three strong baselines: CE [6], Focal [22] and LDAM
[21], each reusing the same class reweighting and delayed
reweighting schedule discussed above. For Focal loss we set γ
= 0.5 [22], and for LDAM we set C such that the maximum
margin is 0.5 [21].

B. Hyperparameter Search for HAR

HAR introduces two hyperparameters—training and inference
exit thresholds t, s in Eq. (4),(8) respectively. Parameter t

controls the number of early exiting examples during training.
Smaller values result in many examples exiting early leading
to a more relaxed definition of example hardness. Parameter
s, is a control knob for varying the computational cost during
inference. We determine s directly on the test split depending
on the desired FLOPS saving, while the optimal value of t is
determined through a line search on the validation split. Tab. I
presents the top-1 accuracy on the three (many/med/few shot)
splits of ImageNet LT, reached by a ResNet-50 model trained
using different values of t.
Selecting t for HAR(CE) For exit loss type cross entropy, we
consider a line search in [0.75,0.95] in steps of 0.05. Tab. Ia
shows the top-1 accuracy peaks when t = 0.9.
Selecting t for HAR(LDAM) For exit loss type LDAM [21],
we consider a line search in [1.7/|c|, 2.1/|c|] in steps of 0.1/|c|
where |c| is the number of classes in the dataset. Tab. Ib shows
the top-1 accuracy peaks when t = 2.0/1k.
We reuse the above hyperparameters: t=0.9 for HAR(CE), and
t = 2.0/|c| for HAR(LDAM); on all datasets.

TABLE I: Line search for inference threshold t in HAR. We
observe a clear trend wherein the top-1 validation accuracy (of
a ResNet-50 trained on ImageNet LT) increases with larger t
until a certain point after which it falls. The column with the
optimal value of t is highlighted in gray.

t 0.75 0.8 0.85 0.9 0.95

Many 60.2 60.8 61.1 62.4 62.6
Med 44.6 45.0 45.6 47.3 46.1
Few 25.3 26.0 26.4 28.5 28.1
All 48.0 48.5 48.9 50.5 50.0

(a) Identifying t for HAR(CE)

t 1.7/1k 1.8/1k 1.9/1k 2.0/1k 2.1/1k

Many 59.7 63.2 65.0 65.7 65.5
Med 47.9 48.5 48.4 48.2 47.8
Few 31.2 30.1 30.1 29.9 28.8
All 50.2 51.7 52.3 52.5 52.0

(b) Identifying t for HAR(LDAM)

C. Two inference modes of HAR

I. Static mode of inference refers to the state when the
bare backbone model, without any early exits, is used for
inference. Such a model engenders a fixed compute capacity (or
FLOPS) during inference. Fig. 5 plots the top-1 accuracy vs. the
inference FLOPS for ResNet-50/DenseNet-169 models trained
on ImageNet LT. The solid red squares and solid blue triangles
depict the static DenseNet-169 and ResNet-50 models trained
with different loss functions. Observe that the static models
trained with HAR outperform other loss functions indicating
the merits of enabling hardness-awareness during training.
II. Dynamic mode of inference refers to the state when the
intermediate branches are preserved (during inference) and
used to early-exit easier examples. In this mode, the compute
capacity (or FLOPS) can be varied by changing the inference
threshold parameter s in Eq. 8. Each value of s leads to a new

CE + DRW
Focal + DRW

CE

HAR: Higher Dynamic & Static Inference Accuracies
in DenseNet-169 & ResNet-50

53

52

51

50

49

48

47

46

45

44
170k160k150k 180k 190k 200k 210k

LDAM + DRW
CE + DRW

Focal + DRW

CE

LDAM + DRW

HAR
Dynamic

HAR
DynamicStatic

Static

To
p-
1
A
cc
ur
ac
y

(h
ig

he
ri

s
be

tte
r)

Tera Flops (lower is better)

Fig. 5: The static DenseNet-169 (red squares) and ResNet-50
(blue triangle) trained on ImageNet LT lie along a vertical
line and correspond to a fixed FLOPS budget. In contrast, the
dynamic models trained with HAR lie along an accuracy vs.
efficiency trade-off curve. Observe that HAR leads to higher
accuracy for both static and dynamic modes while additionally
leading to FLOPS savings in the dynamic mode.

point on the accuracy vs. efficiency trade-off curve. The hollow
red squares and blue triangles in Fig. 5 plot this trade-off for
a DesneNet-169 and ResNet-50 model trained with HAR. The
three points are obtained by setting s ∈ {1.7, 1.75, 1.8}×10−3.
We observe that the accuracy-efficiency curve envelopes the
other baselines indicating that HAR leads to a favorable trade-
off even in the dynamic mode.

D. Comparison to the state-of-the-art

We compare against the s.o.t.a, assuming the dynamic mode
of inference for HAR, since it leads to practical compute savings.
We observe that HAR is able to improve the accuracy of s.o.t.a
methods (CE+DRW & LDAM+DRW) by incorporating the
notion of hardness during training. Further discussion is driven
by three broad questions.

I. How does HAR perform under different levels of imbal-
ance? To answer this question, we follow prior work [21], [31]
and train a ResNet-32 model on CIFAR-10 LT and CIFAR-100
LT with three imbalance levels (100×, 50×, 10×). The results
in Tab. II present two key observations.

1) HAR improves accuracy under all imbalance levels
(100×, 50×, 10×) for both exit-loss types (HAR(CE) and
HAR(LDAM)) while consuming 15− 30% fewer FLOPS on
CIFAR-10 and 2− 10% fewer FLOPS on CIFAR-100.

2) Accuracy gap increases with imbalance. The accuracy
improvement is higher for greater levels of imbalance
(e.g.,1.1%, 1%, 0.4% improvement over LDAM for
100×, 50×, 10× on CIFAR-10)

II. Which classes drive the overall improvement in accu-
racy? To answer this question, we follow prior work [7] to
train a ResNet-50 model on ImageNet LT and iNaturalist-18
datasets. In Tab. III, for each method, we dissect its overall
top-1 accuracy into accuracies on three class splits: many-shot
classes (>100 examples/class), medium-shot classes (20-100
examples/class), and few-shot classes (<20 examples/class).
Following are the key observations:

1) Many-shot split drives accuracy improvement. On
both datasets, we observe that the greatest accuracy
improvements are observed on the many-shot splits
(e.g.,+2.7% relative to LDAM on ImageNet LT, and
+2.2% on iNaturalist’18).

TABLE II: HAR leads to highest top-1 accuracies while saving
inference FLOPS, for ResNet-32 models trained on long tailed
CIFAR-10 and CIFAR-100 datasets. We consider three levels
of imbalance (100×, 50×, 10×). Top rows are recent methods;
middle and bottom rows compare HAR fitted with two different
exit-loss types (CE/LDAM). Our re-implementation marked by
†; results from [31] marked by ††.

.

CIFAR-10 LT CIFAR-100 LT
100× 50× 10× 100× 50× 10×

CE† 70.4 74.8 83.6 28.3 43.9 55.7
Focal [22]†† 70.4 76.7 86.7 28.4 44.3 55.8
Mixup [49]†† 73.1 77.8 87.1 39.5 45.0 58.0
Manifold Mixup [50]†† 73.0 78.0 87.0 38.3 43.1 56.5
CE+DRW [6]† 76.3 80.0 87.6 41.4 46.0 58.3
HAR(CE)+DRW (Our) 76.8 80.8 87.6 42.5 47.1 58.7
Flops saving 32% 29% 26% 11% 11% 10%

LDAM+DRW [21]† 77.0 81.4 87.6 42.0 46.6 58.7
HAR(LDAM)+DRW (Our) 78.1 82.4 88.0 43.1 47.5 58.9
Flops Saving 15% 21% 20% 0% 2% 3%

TABLE III: HAR leads to highest top-1 accuracies with
compute savings, for ResNet-50 trained on Imagenet LT and
iNaturalist’18 datasets. We consider the many-, medium-, and
few-shot splits. Top rows are recent methods; middle and
bottom rows compare HAR fitted with two different exit-loss
types (CE/LDAM). Our re-implementation marked by †; results
from [7] marked by ††.

ImageNet LT iNaturalist’18
Mny Med Few All Mny Med Few All

CE† 63.8 38.5 13.6 44.6 72.7 63.8 58.7 62.7
CRT [7]†† 58.8 44.0 26.1 47.3 69.0 66.0 63.2 65.2
LWS [7]†† 57.1 45.2 29.3 47.7 65.0 66.3 65.5 65.9
τ -norm [7]†† 56.6 44.2 27.4 46.7 65.6 65.3 65.9 65.6
Focal+DRW [22]† 59.5 44.6 27.0 47.9 66.1 66.0 64.3 65.4
CE+DRW [6]† 60.3 45.2 27.0 48.5 67.1 66.2 65.4 65.9
HAR(CE)+DRW (Our) 60.7 45.5 27.7 48.9 67.4 66.3 65.1 66.0
Flops Saving 21% 13%
LDAM + DRW [21]† 61.1 44.7 28.0 48.8 70.0 67.4 66.1 67.1
HAR(LDAM)+DRW (Our) 63.8 47.2 28.1 51.0 72.2 69.0 65.7 68.0
Flops Saving 5% 2%

Predicted

Predictions at earlier exits predominantly belong to many- and medium-shot classes, and are more accurate.

Actual
classes

100%

Med
Shot

Few
Shot

0.1%

0%
0%

0%
0%

Many
Shot

Med

Few

Many

Med

Few

Many

Med

Few

Many

Med

Few

Many93%

83%

54%

96%

84%

68%

97%

83%

49%

45%

38%

25%

19%

14%

8%

62%

79%

89%

14%

6%

2%

5%

1%

0.2%

%of total examples exiting at this exit

Accuracy (in%) of examples that exits

(a) Exit 1 (b) Exit 2 (c) Exit 3 (d) Exit 4 (e) Exit 5

Many

Many

Few

Few

Confusion matrix of examples exiting at this exitConfusion matrix of examples exiting at this exit

Fig. 6: For a ResNet-50 trained on ImageNet LT with HAR (LDAM)+DRW, we show at each exit: (top row) The confusion matrix
of predictions, (bottom row) The percentage of total examples for each split (many-, medium-, few-shot) that exit and the
accuracy of these predictions. We note that (1) the early exiting examples are predominantly from the many- and medium-shot
classes (2) the predictions at early exits, exhibit a high accuracy.

2) Baseline methods lose significant accuracy on many-
and medium-shot classes. Relative to the CE baseline,
we observe SOTA methods lose significant accuracy on
the many- and medium-shot classes. This explains how
HAR improves overall accuracy: It mitigates the accuracy
decline on majority and medium shot classes while leading
to comparable accuracy gain on the few-shot classes.

E. Analyzing the dynamic inference mode

I. Which classes tend to exit earlier? To answer this question,
in Fig. 6, we present the confusion matrix and the class-
composition for each exit of a ResNet-50 trained on ImageNet
LT with HAR. Following are some key observations.

1) Early-exiting examples are predominantly from the
majority classes. The confusion matrices in the top row
show a distribution shift from a top-left bright diagonal in
part a (exit-1) to a middle heavy diagonal in part d (exit
4). Since the 1000 classes are sorted according to size
such that top and left contain the majority classes while
bottom and right contain the rare classes, this observation
indicates that the initial exits prefer the many-shot classes
while the later exits prefer the medium-shot classes. The
red bar plots of Fig. 6a-e reinforce this observation by
showing the percentage of each split that has exited by
each exit. Notice that before last exit, 38% of the many-
shot, 21% of the medium-shot and 11% of the few-shot
split have already been classified.

2) Early exiting examples are more trustworthy due to
higher accuracy. The purple bar plots of Fig. 6a-e present
the accuracy for examples exiting at each exit. Notice that
for all three splits (many, med, few shots), the accuracy
for exits 1-4 is nearly double than that of exit-5. This
indicates that an early prediction is much more trustworthy
(due to higher accuracy) than that a late prediction.

TABLE IV: HAR leads to the highest top-1 accuracy for a
ResNet-50 model trained on ImageNet LT, and, without any
class re-weighting. We consider the static inference mode.

Loss Many Med Few All

Focal (γ = 0.5) 63.5 38.5 13.6 44.7
Focal (γ = 1.0) 62.8 37.1 12.7 43.7
Focal (γ = 2.0) 62.1 36.6 11.9 43.1
CE 63.8 38.5 13.6 44.9
HAR (CE) 63.9 39.9 16.0 45.9
LDAM 64.9 39.1 12.6 45.5
HAR (LDAM) 66.3 42.4 14.2 47.8

TABLE V: Ablating on the location of a single early exit
(indicated by a E) using a static ResNet-50 trained with
HAR (LDAM)+ DRW on ImageNet LT. The naming convention
specifies C for a convolution layer, B for a residual block and E
for an early exit. Configuration CBBEBBE outperforms others,
suggesting the value of an early exit peaks between blocks 2,3.

Model Many Med Few All

CBBBBE 61.1 44.7 28.0 48.8
CEBBBBE 62.3 44.9 25.9 49.0
CBEBBBE 63.0 45.9 26.7 49.9
CBBEBBE 63.3 46.6 27.8 50.5
CBBBEBE 62.5 46.0 27.6 49.8

F. Ablation studies

How does HAR perform without class reweighting? Tab. IV
presents the accuracy of a ResNet-50 model trained on
ImageNet LT with three different loss functions—focal, cross
entropy and LDAM—and without any class reweighting at the
early-exits. We observe that the (static) models trained with
HAR outperform the vanilla loss functions (CE, LDAM) on all
the three splits.

What is the impact of the location of early exits? To measure
this, in Tab. V, we ablate on the location of a single early exit

Peacock

Exit 1

Exit 3

Exit 5

Rapeseed LemonGarden Spider Zebra Cardoon
Class

In
cr

ea
si

ng
ha

rd
ne

ss

Fig. 7: Images exiting from the first, third and the final exit of
a HAR model indicate that as the exits increase, so does the
visual hardness.

attached to a ResNet-50 model trained on ImageNet LT using
the HAR (LDAM)+DRW loss. For comparison, we use the static
mode, which means the exits are only used during training and
are discarded for inference. Among the several configurations
(with naming convention: C=conv layer, B=block, E=exit), the
one with an exit after block 2—CBBEBBE—outperforms all
others. This suggests a diminishing value of placing an exit
too early/late in the backbone.

Can we visualize the learned notion of example hardness?
Fig. 7 presents a randomly selected subset of test split images
exiting through the auxiliary branches of a HAR ResNet-50
model trained on ImageNet LT. Among each class, we observe
that the object of interest is easier to distinguish in images
exiting from earlier branches which indicates that HAR enables
a model to learn an intuitive notion of image hardness.

V. CONCLUSION

We identified the notion of sample-hardness as a key
concept to improve generalization under a long-tailed class
distribution. To incorporate this notion of hardness in the
learning process, we proposed the HAR framework. HAR is
complementary to existing work in long-tailed classification
and can readily integrate with existing approaches to improve
classification accuracy. Extensive evaluations demonstrate that
HAR outperforms existing state-of-the-art techniques while
saving inference FLOPS.

APPENDIX A
DATASET CONSTRUCTION

We follow prior work [6], [7], [21], [31] for constructing the
datasets. Specifically, the train split is subsampled as follows,
while the val/test split is left class-balanced.
CIFAR LT datasets. Following [6], the train sets for CIFAR-
10 LT, CIFAR-100 LT are sampled from the original training
sets of CIFAR-10 and CIFAR-100 according to the exponential
distribution nc = nµc. Here nc refers to the remaining number
of examples in class c, n is the original number of examples
per class (5000 for CIFAR-10 and 500 for CIFAR-100) and

µ ∈ [0, 1]. We select µ such that the imbalance ratio—which
is defined as the ratio between the number of examples in the
largest and smallest class—is 10×, 50×, 100×.
ImageNet LT dataset. Following [2], the training set is sub-
sampled from the original ImageNet training set by following
the pareto distribution with α = 6. The val split is the same
as the original ImageNet dataset.
iNaturalist’18 dataset [20]. This is a naturally imbalanced
dataset consisting of images from 8,142 species. The validation
and test splits are balanced across classes.

APPENDIX B
ARCHITECTURE OF HAR MODELS

HAR attaches an auxiliary exit before each residual/dense
block. The augmented models are shown in Fig. 8, with the
auxiliary exit design considerations discussed below.
ResNet-32: This backbone model contains three residual block
groups (see Fig. 8a), with each group containing five standard
“basic blocks”. Each auxiliary exit consists of two convolution
layers with sixty-four kernels of size 3 × 3, followed by an
average pooling and dense layer.
ResNet-50: This backbone model contains four residual block
groups (see Fig. 8b), with the groups containing 3, 4, 6 and
3 “bottleneck” blocks respectively. Since the filter channels
increase rapidly in this architecture (e.g. group three has 1024
channels), we use depth-wise separable convolution layers at
each exit which helps reduce the additional FLOPS introduced
by the auxiliary exits.
DenseNet-169 This backbone model contains four dense block
groups (see Fig. 8c), with the groups containing 6, 12, 32 and
32 “dense” blocks respectively. Each auxiliary exit consists
of two convolution layers with 3× 3 kernels followed by an
average pooling and dense layer.

REFERENCES

[1] M. A. Mazurowski, P. A. Habas, J. M. Zurada, J. Y. Lo, J. A. Baker,
and G. D. Tourassi, “Training neural network classifiers for medical
decision making: The effects of imbalanced datasets on classification
performance,” Neural networks, 2008.

[2] Z. Liu, Z. Miao, X. Zhan, J. Wang, B. Gong, and S. X. Yu, “Large-scale
long-tailed recognition in an open world,” in CVPR, 2019.

[3] R. Duggal, S. Freitas, C. Xiao, D. H. Chau, and J. Sun, “Rest: Robust and
efficient neural networks for sleep monitoring in the wild,” in Proceedings
of The Web Conference 2020, 2020, pp. 1704–1714.

[4] A. Krizhevsky, G. Hinton et al., “Learning multiple layers of features
from tiny images,” 2009.

[5] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “Imagenet:
A large-scale hierarchical image database,” in CVPR, 2009.

[6] Y. Cui, M. Jia, T.-Y. Lin, Y. Song, and S. Belongie, “Class-balanced loss
based on effective number of samples,” in CVPR, 2019, pp. 9268–9277.

[7] B. Kang, S. Xie, M. Rohrbach, Z. Yan, A. Gordo, J. Feng, and
Y. Kalantidis, “Decoupling representation and classifier for long-tailed
recognition,” ICLR, 2020.

[8] P.-H. C. Chen, Y. Liu, and L. Peng, “How to develop machine learning
models for healthcare,” Nature materials, 2019.

[9] M. Buda, A. Maki, and M. A. Mazurowski, “A systematic study of
the class imbalance problem in convolutional neural networks,” Neural
Networks, vol. 106, pp. 249–259, 2018.

[10] C. Huang, Y. Li, C. Change Loy, and X. Tang, “Learning deep
representation for imbalanced classification,” in CVPR, 2016.

[11] Y.-X. Wang, D. Ramanan, and M. Hebert, “Learning to model the tail,”
in NIPS, 2017, pp. 7029–7039.

3x
3

@
 3

2

3x
3

@
 3

2

3x
3

@
 3

2

3x
3

@
 3

2

3x
3

@
 3

2

3x
3

@
 6

4

3x
3

@
 6

4

3x
3

@
 6

4

3x
3

@
 6

4

3x
3

@
 6

4

Residual Block Group 1 Residual Block Group 2 Residual Block Group 3

Exit 1 Exit 2 Exit 3

Exit 4

3x
3

@
 1

6

3x
3

@
 1

6

3x
3

@
 1

6

3x
3

@
 1

6

3x
3

@
 1

6

3x
3

@
 1

6

Basic Block

Conv Layer

Softmax
3x3 @ 64

3x3 @ 64

3x3 @ 64

3x3 @ 64

3x3 @ 64

3x3 @ 64

(a) ResNet-32 model with early exits.

3x3 @ 64

3x3 @ 64

3x3 @ 256

3x3 @ 256

3x3 @ 512

3x3 @ 512

Residual Block Group 1 Residual Block Group 2 Residual Block Group 3

Exit 1 Exit 2 Exit 3

Exit 5

7x
7

@
 6

4

3x
3

@
 2

56

3x
3

@
 2

56

3x
3

@
 2

56
D. Sep. Conv Layer

Conv Layer

Softmax

3x
3

@
 5

12

3x
3

@
 5

12

3x
3

@
 5

12

3x
3

@
 5

12

3x
3

@
10

24

3x
3

@
10

24

3x
3

@
10

24

3x
3

@
10

24

3x
3

@
10

24

3x
3

@
10

24

3x
3

@
20

48

3x
3

@
20

48

3x
3

@
20

48

3x3 @ 1024

3x3 @ 1024

Exit 4

Residual Block Group 4

Bottleneck Block

(b) ResNet-50 model with early exits.

3x3 @ 640

Exit 1

Dense Block Group 1
#Dense Blocks = 6

3x3 @ 64

3x
3

@
 6

4

3x3 @ 64

Dense Block

Conv Layer

Softmax

Exit 2 Exit 3 Exit 4

3x3 @ 128 3x3 @ 256

Dense Block Group 2
#Dense Blocks = 12

Dense Block Group 3
#Dense Blocks = 32

Dense Block Group 4
#Dense Blocks = 32

3x3 @ 128 3x3 @ 256 3x3 @ 640

1x
1

@
 1

28

1x
1

@
 2

56

1x
1

@
 6

40

Transition Block

Exit 5

(c) DenseNet-169 model with early exits.

Fig. 8: HAR augments a backbone model with auxilliary exits. This figure describes the configuration of the early exits for the
three models considered in this work. The notation 3× 3@16 indicates that the block / layer contains 16 kernels of size 3× 3.

[12] D. Mahajan, R. Girshick, V. Ramanathan, K. He, M. Paluri, Y. Li,
A. Bharambe, and L. van der Maaten, “Exploring the limits of weakly
supervised pretraining,” in ECCV, 2018, pp. 181–196.

[13] Q. Dong, S. Gong, and X. Zhu, “Class rectification hard mining for
imbalanced deep learning,” in ICCV, 2017.

[14] H.-S. Chang, E. Learned-Miller, and A. McCallum, “Active bias: Training
more accurate neural networks by emphasizing high variance samples,”
arXiv preprint arXiv:1704.07433, 2017.

[15] M. Ren, W. Zeng, B. Yang, and R. Urtasun, “Learning to reweight
examples for robust deep learning,” in ICML, 2018.

[16] J. Shu, Q. Xie, L. Yi, Q. Zhao, S. Zhou, Z. Xu, and D. Meng, “Meta-
weight-net: Learning an explicit mapping for sample weighting,” arXiv
preprint arXiv:1902.07379, 2019.

[17] M. A. Jamal, M. Brown, M.-H. Yang, L. Wang, and B. Gong, “Rethinking
class-balanced methods for long-tailed visual recognition from a domain
adaptation perspective,” in CVPR, 2020.

[18] H. He, Y. Bai, E. A. Garcia, and S. Li, “Adasyn: Adaptive synthetic
sampling approach for imbalanced learning,” in IJCNN.

[19] N. V. Chawla, A. Lazarevic, L. O. Hall, and K. W. Bowyer, “Smoteboost:
Improving prediction of the minority class in boosting,” in European
conference on principles of data mining and knowledge discovery.
Springer, 2003, pp. 107–119.

[20] G. Van Horn, O. Mac Aodha, Y. Song, Y. Cui, C. Sun, A. Shepard,
H. Adam, P. Perona, and S. Belongie, “The inaturalist species classifica-
tion and detection dataset,” in CVPR, 2018.

[21] K. Cao, C. Wei, A. Gaidon, N. Arechiga, and T. Ma, “Learning
imbalanced datasets with label-distribution-aware margin loss,” in NIPS,
2019, pp. 1565–1576.

[22] T.-Y. Lin, P. Goyal, R. Girshick, K. He, and P. Dollár, “Focal loss for
dense object detection,” in ICCV, 2017, pp. 2980–2988.

[23] C. Huang, Y. Li, C. L. Chen, and X. Tang, “Deep imbalanced learning
for face recognition and attribute prediction,” TPAMI, 2019.

[24] N. V. Chawla, K. W. Bowyer, L. O. Hall, and W. P. Kegelmeyer,
“Smote: synthetic minority over-sampling technique,” Journal of artificial
intelligence research, vol. 16, pp. 321–357, 2002.

[25] H. Han, W.-Y. Wang, and B.-H. Mao, “Borderline-smote: a new over-
sampling method in imbalanced data sets learning,” in International
conference on intelligent computing. Springer, 2005, pp. 878–887.

[26] S. Barua, M. M. Islam, X. Yao, and K. Murase, “Mwmote–majority
weighted minority oversampling technique for imbalanced data set
learning,” TKDE, 2012.

[27] S.-J. Yen and Y.-S. Lee, “Cluster-based under-sampling approaches for
imbalanced data distributions,” Expert Systems with Applications, vol. 36,
no. 3, pp. 5718–5727, 2009.

[28] M. Galar, A. Fernández, E. Barrenechea, and F. Herrera, “Eusboost:
Enhancing ensembles for highly imbalanced data-sets by evolutionary
undersampling,” Pattern recognition, 2013.

[29] W.-C. Lin, C.-F. Tsai, Y.-H. Hu, and J.-S. Jhang, “Clustering-based
undersampling in class-imbalanced data,” Information Sciences, vol. 409,
pp. 17–26, 2017.

[30] C.-F. Tsai, W.-C. Lin, Y.-H. Hu, and G.-T. Yao, “Under-sampling class
imbalanced datasets by combining clustering analysis and instance
selection,” Information Sciences, vol. 477, pp. 47–54, 2019.

[31] B. Zhou, Q. Cui, X.-S. Wei, and Z.-M. Chen, “Bbn: Bilateral-branch
network with cumulative learning for long-tailed visual recognition,”
arXiv preprint arXiv:1912.02413, 2019.

[32] Y. Bengio, J. Louradour, R. Collobert, and J. Weston, “Curriculum
learning,” in ICML, 2009.

[33] G. Hacohen and D. Weinshall, “On the power of curriculum learning in
training deep networks,” in ICML, 2019.

[34] A. Shrivastava, A. Gupta, and R. Girshick, “Training region-based object
detectors with online hard example mining,” in CVPR, 2016.

[35] C. Florensa, D. Held, X. Geng, and P. Abbeel, “Automatic goal generation
for reinforcement learning agents,” in ICML, 2018.

[36] T. Matiisen, A. Oliver, T. Cohen, and J. Schulman, “Teacher–student
curriculum learning,” IEEE transactions on neural networks and learning
systems, vol. 31, no. 9, pp. 3732–3740, 2019.

[37] G. Huang, D. Chen, T. Li, F. Wu, L. van der Maaten, and K. Q.
Weinberger, “Multi-scale dense networks for resource efficient image
classification,” in ICLR, 2018.

[38] M. Phuong and C. H. Lampert, “Distillation-based training for multi-exit
architectures,” in ICCV, October 2019.

[39] T.-K. Hu, T. Chen, H. Wang, and Z. Wang, “Triple wins: Boosting
accuracy, robustness and efficiency together by enabling input-adaptive
inference,” arXiv preprint arXiv:2002.10025, 2020.

[40] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan,
V. Vanhoucke, and A. Rabinovich, “Going deeper with convolutions,” in
CVPR, 2015.

[41] E. Baccarelli, S. Scardapane, M. Scarpiniti, A. Momenzadeh, and
A. Uncini, “Optimized training and scalable implementation of con-
ditional deep neural networks with early exits for fog-supported iot
applications,” Information Sciences, 2020.

[42] F. Nan and V. Saligrama, “Adaptive classification for prediction under a
budget,” arXiv preprint arXiv:1705.10194, 2017.

[43] S. Scardapane, M. Scarpiniti, E. Baccarelli, and A. Uncini, “Why should
we add early exits to neural networks?” Cognitive Computation, 2020.

[44] S. Teerapittayanon, B. McDanel, and H.-T. Kung, “Branchynet: Fast
inference via early exiting from deep neural networks,” in ICPR. IEEE,
2016, pp. 2464–2469.

[45] H. Li, H. Zhang, X. Qi, R. Yang, and G. Huang, “Improved techniques
for training adaptive deep networks,” in ICCV, 2019, pp. 1891–1900.

[46] C.-Y. Lee, S. Xie, P. Gallagher, Z. Zhang, and Z. Tu, “Deeply-supervised
nets,” in AISTATS, 2015.

[47] J. Kim, J. K. Lee, and K. M. Lee, “Deeply-recursive convolutional
network for image super-resolution,” in CVPR, 2016.

[48] T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean, “Dis-
tributed representations of words and phrases and their compositionality,”
in NIPS, 2013, pp. 3111–3119.

[49] H. Zhang, M. Cisse, Y. N. Dauphin, and D. Lopez-Paz, “mixup: Beyond
empirical risk minimization,” arXiv preprint, 2017.

[50] V. Verma, A. Lamb, C. Beckham, A. Najafi, I. Mitliagkas, A. Courville,
D. Lopez-Paz, and Y. Bengio, “Manifold mixup: Better representations
by interpolating hidden states,” arXiv preprint arXiv:1806.05236, 2018.

	Introduction
	Our Contributions

	Related Research
	Overcoming class imbalance
	Hardness aware learning methods
	Multi-branch neural networks

	Methodology
	Why care about hardness?
	Training a multi-branch DNN with HAR
	Preliminaries
	General HAR loss
	Instantiating the HAR loss
	Outcome of training with the HAR loss

	Inference in multi-branch neural networks
	Preliminaries
	Dynamic inference with HAR

	Experiments
	Experimental Setup
	Hyperparameter Search for HAR
	Two inference modes of HAR
	Comparison to the state-of-the-art
	Analyzing the dynamic inference mode
	Ablation studies

	Conclusion
	Appendix A: Dataset Construction
	Appendix B: Architecture of HAR models
	References

