
Evaluating Graph Vulnerability and Robustness using TIGER
Scott Freitas

safreita@gatech.edu
Georgia Institute of Technology

Atlanta, Georgia, USA

Diyi Yang
dyang888@gatech.edu

Georgia Institute of Technology
Atlanta, Georgia, USA

Srijan Kumar
srijan@gatech.edu

Georgia Institute of Technology
Atlanta, Georgia, USA

Hanghang Tong
htong@illinois.edu

University of Illinois at
Urbana-Champaign
Urbana, Illinois, USA

Duen Horng Chau
polo@gatech.edu

Georgia Institute of Technology
Atlanta, Georgia, USA

ABSTRACT

Network robustness plays a crucial role in our understanding of
complex interconnected systems such as transportation, communi-
cation, and computer networks. While significant research has been
conducted in the area of network robustness, no comprehensive
open-source toolbox currently exists to assist researchers and prac-
titioners in this important topic. This lack of available tools hinders
reproducibility and examination of existing work, development of
new research, and dissemination of new ideas. We contribute Tiger,
an open-sourced Python toolbox to address these challenges. Tiger
contains 22 graph robustness measures with both original and fast
approximate versions; 17 failure and attack strategies; 15 heuristic
and optimization-based defense techniques; and 4 simulation tools.
By democratizing the tools required to study network robustness,
our goal is to assist researchers and practitioners in analyzing their
own networks; and facilitate the development of new research in
the field. Tiger has been integrated into the Nvidia Data Science
Teaching Kit available to educators across the world. Tiger is open
sourced at: https://github.com/safreita1/TIGER.

CCS CONCEPTS

• Information systems → Social networks; Computing plat-

forms.

KEYWORDS

Graphs, robustness, vulnerability, networks, attacks, defense

ACM Reference Format:

Scott Freitas, Diyi Yang, Srijan Kumar, Hanghang Tong, and Duen Horng
Chau. 2021. Evaluating Graph Vulnerability and Robustness using TIGER.
In Proceedings of the 30th ACM International Conference on Information
and Knowledge Management (CIKM ’21), November 1–5, 2021, Virtual Event,
QLD, Australia. ACM, New York, NY, USA, 9 pages. https://doi.org/10.1145/
3459637.3482002

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
CIKM ’21, November 1–5, 2021, Virtual Event, QLD, Australia
© 2021 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-8446-9/21/11. . . $15.00
https://doi.org/10.1145/3459637.3482002

1 INTRODUCTION

Through analyzing and understanding the robustness of networks
we can: (1) quantify network vulnerability and robustness, (2) aug-
ment a network’s structure to resist attacks and recover from failure,
and (3) control the dissemination of entities on the network (e.g.,
viruses, propaganda). Consider the impactful scenario where a virus
penetrates one or more machines in an enterprise network. Once
infected, the virus laterally spreads to susceptible machines in the
network, resulting in system-wide failures, data corruption and
exfiltration of trade secrets and intellectual property. This scenario
is commonly modeled as a dissemination of entities problem us-
ing an epidemiological susceptible-infected-susceptible (SIS) model,
where each machine is in either one of two states—infected or
susceptible (see Figure 1). How quickly a virus spreads across a
network is known as the network’s vulnerability, and is defined
as a measure of susceptibility to the dissemination of entities across
the network [29]. A natural counterpart to network vulnerability
is robustness, defined as a measure of a network’s ability to con-
tinue functioning when part of the network is naturally damaged or
targeted for attack [3, 5, 8]
Challenges for robustness and vulnerability research. Net-
work robustness has a rich and diverse background spanning nu-
merous fields of engineering and science [3, 13, 22, 25, 29]. Un-
fortunately, this cross-disciplinary nature comes with significant
challenges—resulting in slow dissemination of ideas, leading to
missed innovation opportunities. We believe a unified and easy-
to-use software framework is key to standardizing the study of
network robustness, helping accelerate reproducible research and
dissemination of ideas.
Tiger design and implementation.We present Tiger, an open-
sourced Python Toolbox for evaluatIng Graph vulnErability and
Robustness. Through Tiger, our goal is to catalyze network ro-
bustness research, promote reproducibility and amplify the reach
of novel ideas. In designing Tiger, we consider multiple complex
implementation decisions, including: (1) the criterion for inclusion
in the toolbox; (2) identifying and synthesizing a set of core robus-
tivity features needed by the community; and (3) the design and
implementation of the framework itself. We address the inclusion
criterion by conducting a careful analysis of influential and rep-
resentative papers (e.g., [3, 5, 18, 27, 29]) across top journals and
conferences from the relevant domains (e.g., ICDM, SDM, Physica
A, DMKD, Physical Review E), many of which we will discuss in

https://github.com/safreita1/TIGER
https://doi.org/10.1145/3459637.3482002
https://doi.org/10.1145/3459637.3482002
https://doi.org/10.1145/3459637.3482002

Figure 1: Tiger provides a number of important tools for graph vulnerability and robustness research, including graph

robustness measures, attack strategies, defense techniques and simulation models. Here, a Tiger user is visualizing a

computer virus simulation that follows the SIS infection model (effective strength 𝑠 = 3.21) on the Oregon-1 Autonomous
System network [26]. Top: without any defense, the virus remains endemic. Bottom: defending only 5 nodes with

Netshield [29], the number of infected entities is reduced to nearly zero.

detail in this paper. We also include papers posted on arXiv, as
many cutting-edge papers are first released there.

Based on our analysis, we identify and include papers that tackle
one or more of the following fundamental tasks [3, 8, 18]: (1) mea-
suring network robustness and vulnerability; (2) understanding
network failure and attack mechanisms; (3) developing defensive
techniques; and (4) creating simulation tools to model processes.
From these papers, we select and implement a total of 44 attacks,
defenses and robustness measures, along with 4 simulation tools in
which they can be used. Due to a vibrant and growing community
of users, we develop Tiger in Python 3, leveraging key libraries,
such as NetworkX, SciPy, Numpy and Matplotlib. While excellent
alternative network analysis tools exist [1, 2, 12, 15, 20, 23, 24, 28],
many of them are domain specific (e.g., EoN [1], WNTR [23]) or
do not provide direct support for network robustness analysis (e.g.,
NetworkX [15], Gephi [2]). In contrast, Tiger complements existing
tools while providing key missing network robustness components.

1.1 Contributions

1. TIGER.We present Tiger, the first open-sourced Python tool-
box for evaluating network vulnerability and robustness of graphs.
Tiger contains 22 graph robustness measures with both original
and fast approximate versions when possible; 17 failure and attack
mechanisms; 15 heuristic and optimization based defense tech-
niques; and 4 simulation tools. Tiger also supports a large number
of GPU accelerated robustness measures. To maintain the integrity
of the code base, Tiger uses continuous integration to run a suite
of test cases on every commit. To the best of our knowledge, this
makes Tiger the most comprehensive open-source framework for
network robustness analysis to date.

2. Open-Source & Permissive Licensing. Our goal is to democ-
ratize the tools needed to study network robustness; assisting re-
searchers and practitioners in the analysis of their own networks.
As such, we open-source the code on Github and PyPi with an MIT
license available at: https://github.com/safreita1/TIGER.
3. Extensive Documentation & Tutorials. We extensively doc-
ument the functionality of Tiger, providing docstrings for each
function and class, along with quick examples on how to use the

https://github.com/safreita1/TIGER

robustness measures, attacks, defenses, and simulation frameworks.
In addition, we provide 5 detailed tutorials—one for every major
component of Tiger’s functionality—on multiple large-scale, real-
world networks, including every figure and plot shown in this paper.
Users with Python familiarity will be able to readily pick up Tiger
for analysis with their own data.
4. Community Impact. Tiger helps enable reproducible research
and the timely dissemination of new and current ideas in the area
of network robustness and vulnerability analysis. As part of the
newly released Nvidia Data Science Teaching Kit, Tiger will be
used by educators and researchers across the world. Tiger has been
integrated into the Nvidia Data Science Teaching Kit available to
educators across the world; and Georgia Tech’s Data and Visual
Analytics with over 1,000 students. Since this is a large and highly
active field across many disciplines of science and engineering,
we anticipate that Tiger will have significant impact. As the field
grows, we will continue to update Tiger with new techniques and
features.

2 TIGER ROBUSTNESS MEASURES

Tiger contains 22 robustness measures, grouped into one of three
categories depending on whether the measure utilizes the graph,
adjacency, or Laplacian matrix. We present 3 representative robust-
ness measures, one from each of the three categories, to extensively
discuss. For detailed description and discussion of all 22 measures,
we refer the reader to the online documentation.
Terminology and Notation. As the study of graphs has been car-
ried out in a variety of fields (e.g., mathematics, physics, computer
science), the terminology often varies from field to field. As such,
we refer to the following word pairs interchangeably: (network,
graph), (vertex, node), (edge, link). Throughout the paper, we fol-
low standard practice and use capital bold letters for matrices (e.g.,
𝑨), lower-case bold letters for vectors (e.g., 𝒂). Also, we focus on
undirected and unweighted graphs.

2.1 Example Measures

Average vertex betweenness (𝑏𝑣) of a graph 𝐺 = (𝒱, ℰ) is the
summation of vertex betweenness 𝑏𝑢 for every node 𝑢 ∈ 𝑉 , where
vertex betweenness for node 𝑢 is defined as the number of shortest
paths that pass through 𝑢 out of the total possible shortest paths

𝑏𝑣 =
∑
𝑢∈𝑉

∑
𝑠∈𝑉

∑
𝑡 ∈𝑉
𝑠≠𝑡≠𝑢

𝑛𝑠,𝑡 (𝑢)
𝑛𝑠,𝑡

(1)

where 𝑛𝑠,𝑡 (𝑢) is the number of shortest paths between 𝑠 and 𝑡
that pass through 𝑢 and 𝑛𝑠,𝑡 is the total number of shortest paths
between 𝑠 and 𝑡 [11]. Average vertex betweenness has a natural
connection to graph robustness since it measures the average load
on vertices in the network. The smaller the average the more robust
the network, since load is more evenly distributed across nodes.
Spectral scaling (𝜉) indicates if a network is simultaneously sparse
and highly connected, known as “good expansion” (GE) [10, 19].
Intuitively, we can think of a network with GE as a network lacking
bridges or bottlenecks. In order to determine if a network has
GE, [10] proposes to combine the spectral gap measure with odd
subgraph centrality 𝑆𝐶𝑜𝑑𝑑 , which measures the number of odd

length closed walks a node participates in. Formally, spectral scaling
is described in Equation 2,

𝜉 (𝐺) =

√√
1
𝑛

𝑛∑
𝑖=1

{𝑙𝑜𝑔[𝒖1 (𝑖)] − [𝑙𝑜𝑔𝑨 + 1
2
𝑙𝑜𝑔[𝑆𝐶𝑜𝑑𝑑 (𝑖)]]}2 (2)

where𝑨 = [𝑠𝑖𝑛ℎ(𝜆1)]−0.5, 𝑛 is the number of nodes, and 𝒖1 is the
first eigenvector of adjacency matrix 𝑨. The closer 𝜉 is to zero, the
better the expansion properties and the more robust the network.
Formally, a network is considered to have GE if 𝜉 < 10−2, the
correlation coefficient 𝑟 < 0.999 and the slope is 0.5.
Effective resistance (𝑅) views a graph as an electrical circuit
where an edge (𝑖, 𝑗) corresponds to a resister of 𝑟𝑖 𝑗 = 1 Ohm and a
node 𝑖 corresponds to a junction. As such, the effective resistance
between two vertices 𝑖 and 𝑗 , denoted 𝑅𝑖 𝑗 , is the electrical resis-
tance measured across 𝑖 and 𝑗 when calculated using Kirchoff’s
circuit laws. Extending this to the whole graph, we say the effective
graph resistance 𝑅 is the sum of resistances for all distinct pairs of
vertices [8, 14]. Klein and Randic [22] proved this can be calculated
based on the sum of the inverse non-zero Laplacian eigenvalues:

𝑅 =
1
2

𝑛∑
𝑖, 𝑗

𝑅𝑖 𝑗 = 𝑛

𝑛∑
𝑖=2

1
𝜇𝑖

(3)

As a robustness measure, effective resistance measures how well
connected a network is, where a smaller value indicates a more
robust network [8, 14]. In addition, the effective resistance has many
desirable properties, including the fact that it strictly decreases
when adding edges, and takes into account both the number of
paths between node pairs and their length [9].

2.2 Measure Implementation & Evaluation

Our goal for Tiger is to implement each robustness measure in
a clear and concise manner to facilitate code readability, while
simultaneously optimizing for execution speed. Each robustness
measure is wrapped in a function that abstractsmathematical details
away from the user; and any default parameters are set for a balance
of speed and precision. Below we compare the efficacy of 5 fast,
approximate robustness measures, followed by an analysis of the
scalability of all 22 measures.
Approximate Measures. It turns out that a large number of ro-
bustness measures have difficulty scaling to large graphs. To help
address this, we implement and compare 5 fast approximate mea-
sure, three spectral based (natural connectivity, number of spanning
trees, effective resistance), and two graph based (average vertex
betweenness, average edge betweenness) [4, 5]. To approximate
natural connectivity we use the top-𝑘 eigenvalues of the adjacency
matrix as a low rank approximation [5, 27]. For the number of span-
ning trees and effective resistance we take the bottom-𝑘 eigenvalues
of the Laplacian matrix [5]. For graph measures, average vertex
betweenness and average edge betweenness, we randomly sample 𝑘
nodes to calculate centrality. In both cases, the parameter 𝑘 rep-
resents the trade-off between speed (low 𝑘) and precision (high
𝑘). When 𝑘 is equal to the number of nodes 𝑛 in the graph, the
approximate measure is equivalent to the original.

Number of sampled pairs

Average Vertex Betweenness

0
0

2

4

100 200 300

6

8

0

Number of sampled pairs

Average Edge Betweenness

0

40

80

120

100 200 3000
0

100 200 300

5k

15k

25k

Bottom k-eigenvalues

Effective Resistance

Top k-eigenvalues

Natural Connectivity

0 100 200 3000

1

2

3

4
Number of Spanning Trees

0
10

100 200 300

173

10
177

10
181

10
185

Bottom k-eigenvalues

Ap
pr
ox
im
at
io
n
er
ro
r

Comparing Approximation Error

Figure 2: Error of 5 fast, approximate robustness measures supported by Tiger. Parameter 𝑘 represents the trade-off

between speed (low 𝑘) and precision (high 𝑘). To measure approximation efficacy, we vary 𝑘 ∈ [5, 300] in increments of 10 and

measure the error between the approximate and original measure averaged over 30 runs on a clustered scale-free graph with

300 nodes.

To determine the efficacy of each approximation measure we
vary 𝑘 ∈ [5, 300] in increments of 10, and measure the absolute
error between the approximate and original measure, averaged over
30 runs on a clustered scale free graph containing 300 nodes. In
Figure 2, we observe that average vertex betweenness accurately
approximates the original measure using ∼10% of the nodes in the
graph. This results in a significant speed-up, and is in line with prior
research [4]. While the absolute error for each spectral approxi-
mation is large, these approximations find utility in measuring the
relative change in graph robustness after a series of perturbations
(i.e., addition or removal of nodes/edges). While not immediately ob-
vious, this can enable the development a wide range of optimization
based defense techniques [5, 6].

2.3 Running Robustness Measures in TIGER

The code block in Listing 1 illustrates how Tiger abstracts the code
complexity away from the user, enabling them to quickly evaluate
the robustness of their own network data in a simple manner. In
line 1, we import a helper function to generate various NetworkX
graphs; line 2 imports a utility function to run the specified robust-
ness measure; line 5 creates a Barabasi-Albert (BA) graph with 1000
nodes; and in lines 8 and 12 we calculate the graph’s spectral radius
and effective resistance, respectively.

1 from graph_tiger.graphs import graph_loader
2 from graph_tiger.measures import run_measure
3
4 # Load a Barabasi -Albert graph with 1000 nodes
5 graph = graph_loader(graph_type='BA', n=1000, seed =1)
6
7 # Calculate graph's spectral radius
8 sr = run_measure(graph , measure='spectral_radius ')
9 print("Spectral radius:", sr)
10
11 # Calculate graph's effective resistance
12 er = run_measure(graph , measure='effective_resistance ')
13 print("Effective resistance:", er)

Listing 1: Measuring the spectral radius and effective

resistance of a Barabasi-Albert (BA) graph using TIGER

3 TIGER ATTACKS

There are two primary ways a network can become damaged—(1)
natural failure and (2) targeted attack. Natural failures typically
occur when a piece of equipment breaks down from natural causes.
In the study of graphs, this would correspond to the removal of a
node or edge in the graph. While random network failures regularly
occur, they are typically less severe than targeted attacks. This has
been shown to be true across a range of graph structures [3, 32].
In contrast, targeted attacks carefully select nodes and edges in
the network for removal in order to maximally disrupt network
functionality. As such, we focus the majority of our attention to
targeted attacks. In Section 3.1, we provide a high-level overview of
several network failure and attack strategies. Then, in Section 3.2
we highlight 10 attack strategies implemented in Tiger.

3.1 Attack Strategies

We showcase an example attack in Figure 3 on the Kentucky KY-2
water distribution network [16]. The network starts under normal
conditions (far left), and at each step an additional node is removed
by the attacker (red nodes). After removing only 13 of the 814
nodes, the network is split into two separate regions. By step 27,
the network splits into four disconnected regions. In this simulation,
and in general, attack strategies rely on node and edge centrality
measures to identify candidates. Below, we highlight several attack
strategies [18] contained in Tiger.

Initial degree removal (ID) targets nodes with the highest degree
𝛿𝑣 . This has the effect of reducing the total number of edges in the
network as fast as possible [18]. Since this attack only considers its
neighbors when making a decision, it is considered a local attack.
The benefit of this locality is low computational overhead.

Initial betweenness removal (IB) targets nodes with high be-
tweenness centrality 𝑏𝑣 . This has the effect of destroying as many
paths as possible [18]. Since path information is aggregated from
across the network, this is considered a global attack strategy. Unfor-
tunately, global information comes with significant computational
overhead compared to a local attacks.

Step 27Step 27Step 22Step 22Step 13Step 13Step 0Step 0

Node Attack on Water Distribution Network

Figure 3: Tiger simulation of an RD node attack on the KY-2 water distribution network. Step 0: network starts under

normal conditions; at each step a node is removed by the attacker (red nodes). Step 13, 22 & 27: after removing only a few of

the 814 nodes, the network splits into two and three and four disconnected regions, respectively.

Recalculated degree (𝑅𝐷) and betweenness removal (𝑅𝐵) fol-
low the same process as 𝐼𝐷 and 𝐼𝐵, respectively, with one additional
step to recalculate the degree (or betweenness) distribution after
a node is removed. This recalculation often results in a stronger
attack, however, recalculating these distributions adds a significant
amount of computational overhead to the attack.

3.2 Comparing Strategies

To help Tiger users determine the effectiveness of attack strategies,
we evaluate 5 node and 5 edge attacks on the Kentucky KY-2 water
distribution network in Figure 4. We begin by analyzing each node
attack strategy—𝐼𝐷 , 𝑅𝐷 , 𝐼𝐵, 𝑅𝐵 and 𝑅𝑁𝐷 (random selection)—on
the left-side of Figure 4. Attack success is measured based on how
fractured the network becomes when removing nodes from the
network. We identify three key observations—(i) random node re-
moval (𝑅𝑁𝐷) is not an effective strategy on this network structure;
(ii) 𝑅𝐵 is the most effective attack strategy; and (iii) the remaining

RB

IB

ID

RND

RD

0.2

0.4

200 400 600 800

0.6

0.8

1

00

Edge attack

200 400 600 8000

RBRB

IBIB

IDID

RNDRND

RDRD

Node attack

Number edges removed Number nodes removed

LC
C

(n
or

m
.)

Attacks on Water Distribution Network

Figure 4: Efficacy of 5 edge attacks (left) and 5 node attacks

(right) on the KY-2 water distribution network. The most

effective attack (RB) disconnects approximately 50% of the

network with less than 30 removed edges (or nodes).

three attacks are roughly equivalent, falling somewhere between
𝑅𝑁𝐷 and 𝑅𝐵.

Analyzing Figure 3, we can gain insight into why 𝑅𝐵 is the most
effective of the attacks. If we look carefully, we observe that certain
nodes (and edges) in the network act as key bridges between various
network regions. As a result, attacks able to identify these bridges
are highly effective in disrupting this network. In contrast, degree
based attacks are less effective, likely due to the balanced degree
distribution. The analysis is similar for edge based attacks.

3.3 Running Network Attacks in TIGER

The code block in Listing 2 illustrates how Tiger users can quickly
run a network attack by modifying 3 parameters—(1) the number of
attack simulations ‘runs’, (2) the number of nodes to remove ‘steps’,
and (3) the attack strategy ‘attack’. The output of the simulation is
a plot of graph robustness (e.g., largest connected component by
default) versus attack strength.

1 from graph_tiger.attacks import Attack
2 from graph_tiger.graphs import graph_loader
3
4 params = {
5 'runs': 1, # number of simulations
6 'steps ': 30, # remove 1 node per step
7 'attack ': 'rd_node ', # specify attack
8 'seed': 1, # reproducibility
9 }
10
11 # Load Kentucky KY -2 water distribution network
12 graph = graph_loader(graph_type='ky2')
13
14 # Run and plot attack simulation
15 a = Attack(graph , ** params)
16 results = a.run_simulation ()
17 a.plot_results(results)

Listing 2: Attacking the Kentucky KY-2 water distribution

network using TIGER

4 TIGER DEFENSES

The same centrality measures effective in attacking a network are
important to network defense (e.g., degree, betweenness, PageRank,
eigenvector, etc.). In fact, if an attack strategy is known a priori,
node monitoring can largely prevent an attack altogether. In Sec-
tion 4.1, we provide a high-level overview of several heuristic and
optimization based defense techniques. Then, in Section 4.2 we
show Tiger users how several defense techniques can be used to
robustify an attacked network.

4.1 Defense Strategies

We categorize defense techniques based on whether they operate
heuristically, modifying graph structure independent of a robust-
ness measure, or by optimizing for a particular robustness mea-
sure [5]. Within each category a network can be defended i.e.,
improve its robustness by—(1) edge rewiring, (2) edge addition, or
(iii) node monitoring. Edge rewiring is considered a low cost, less
effective version of edge addition. On the other hand, edge addi-
tion almost always provides stronger defense [3]. Node monitoring
provides an orthogonal mechanism to increase network robustness
by monitoring (or removing) nodes in the graph. This has an array
of applications, including: (i) preventing targeted attacks, (ii) miti-
gating cascading failures, and (iii) reducing the spread of network
entities. Below, we highlight several heuristic and optimization
based techniques contained in Tiger.
Heuristic Defenses. We overview 5 edge rewiring and addition
defenses [3], and compare the effectiveness of them in Section 4.2:

1. Random addition: adds an edge between two random nodes.
2. Preferential addition: adds an edge connecting two nodes with

the lowest degrees.
3. Random edge rewiring: removes a random edge and adds one

using (1).
4. Random neighbor rewiring: randomly selects neighbor of a node

and removes the edge. An edge is then added using (1).
5. Preferential random edge rewiring: selects an edge, disconnects

the higher degree node, and reconnects to a random one.

Optimization Defenses. We discuss the Netshield node monitor-
ing technique which identifies key nodes in a network to reduce
the spread of entity dissemination (e.g., viruses) [29]. To minimize
the spread of entities, Netshield minimizes the spectral radius of the
graph 𝜆1 by selecting the best set 𝑆 of 𝑘 nodes to remove from the
graph (i.e., maximize eigendrop). In order to evaluate the goodness
of a node set 𝑆 for removal, [29] proposes the Shield-value measure:

𝑆𝑣 (𝑆) =
∑
𝑖∈𝑆

2𝜆1𝒖1 (𝑖)2 −
∑
𝑖, 𝑗 ∈𝑆

𝐴(𝑖, 𝑗)𝒖 (𝑖)𝒖 (𝑗) (4)

The intuition behind this equation is to select nodes for monitoring
that have high eigenvector centrality (first term), while penalizing
neighboring nodes to prevent grouping (second term). We demon-
strate the utility of this defense mechanism in Section 5.

4.2 Comparing Strategies

To help users evaluate the effectiveness of defense techniques, we
compare 5 edge defenses on the Kentucky KY-2 water distribution

Edge defense on water distribution network

Edges rewired or added

La
rg
es
tc
on

ne
ct
ed

co
m
po

ne
nt

(n
or
m
.)

0.2
0 10 20 30

0.4

0.6

0.8

1

top 30 rb nodes removed

add
pref.
add
pref.

add
random
add
random

rewire
random
rewire
random
rewire pref.
random
rewire pref.
random

rewire random
neighbor
rewire random
neighbor

Figure 5: Comparing ability of 5 edge defenses to improve

KY-2 network robustness after removing 30 nodes via RB

attack. Edge addition performs the best, with random edge

rewiring performing the worst.

network, averaged over 10 runs, in Figure 5. The network is ini-
tially attacked using the 𝑅𝐵 attack strategy (30 nodes removed),
and the success of each defense is measured based on how it can
reconnect the network by adding or rewiring edges in the net-
work (higher is better). Based on Figure 5, we identify three key
observations—(i) preferential edge addition performs the best; (ii)
edge addition generally outperforms rewiring strategies; and (iii)
random neighbor rewiring typically performs better than the other
rewiring strategies.

4.3 Running Network Defenses in TIGER

The code block in Listing 3 illustrates how Tiger users can quickly
setup a network defense simulation. There are 6 core parameters
the user needs to set—the number of defense simulations ‘runs’, the
defense strategy ‘defense’, the number of edges to add or rewire
‘steps’, the attack strategy ‘attack’, and the number of nodes or edges
to remove ’k_a’. The output of the simulation is a plot showing the
ability of the network to recover after it has been attacked.

1 from graph_tiger.defenses import Defense
2 from graph_tiger.graphs import graph_loader
3
4 params = {
5 'runs': 1, # number of simulations
6 'steps ': 30, # rewire 1 edge per step
7 'defense ': 'rewire_edge_preferential ',
8 'attack ': 'rd_node ', # attack strategy
9 'k_a': 30, # attack strength
10 }
11
12 # Load Kentucky KY -2 water distribution graph
13 graph = graph_loader(graph_type='ky2')
14
15 # Run and plot defense simulation
16 d = Defense(graph , ** params)
17 results = d.run_simulation ()
18 d.plot_results(results)

Listing 3: Defending the Kentucky KY-2 water distribution

network using TIGER

5 TIGER SIMULATION TOOLS

We implement 4 broad and important types of robustness simula-
tion tools [3, 18, 21, 29, 31]—(1) dissemination of network entities,
(2) cascading failures (3) network attacks, see Section 3, and (4)
network defense, see Section 4. In Section 5.3, we discuss the im-
plementation of an infectious disease models and how defense
techniques implemented in Tiger can be used to eitherminimize or
maximize the network diffusion. Then, in Section 3, we discuss the
implementation of the cascading failure model and its interactions
with Tiger defense and attack strategies.

5.1 Cascading Failures

Cascading failures often arise as a result of natural failures or tar-
geted attacks in a network. Consider an electrical grid where a
central substation goes offline. In order to maintain the distribution
of power, neighboring substations have to increase production in
order to meet demand. However, if this is not possible, the neigh-
boring substation fails, which in turn causes additional neighboring
substations to fail. The end result is a series of cascading failures
i.e., a blackout [7]. While cascading failures can occur in a variety
of network types e.g., water, electrical, communication, we focus
on the electrical grid. Below, we discuss the design and implemen-
tation of the cascading failure model and how Tiger can be used
to both induce and prevent cascading failures using the attack and
defense mechanisms discussed in Sections 3 and 4, respectively.
Design and Implementation. There are 3 main processes govern-
ing the network simulation—(1) capacity of each node 𝑐𝑣 ∈ [0, 1];
(2) load of each node 𝑙𝑣 ∈ 𝑈 (0, 𝑙𝑚𝑎𝑥); and (3) network redundancy
𝑟 ∈ [0, 1]. The capacity of each node 𝑐𝑣 is the the maximum load
a node can handle, which is set based on the node’s normalized
betweenness centrality [17]. The load of each node 𝑙𝑣 represents the
fraction of maximum capacity 𝑐𝑣 that the node operates at. Load for
each node 𝑐𝑣 is set by uniformly drawing from𝑈 (0, 𝑙𝑚𝑎𝑥), where
𝑙𝑚𝑎𝑥 is the maximum initial load. Network redundancy 𝑟 represents
the amount of reserve capacity present in the network i.e., auxiliary
support systems. At the beginning of the simulation, we allow the
user to attack and defend the network according to the node attack
and defense strategies in Sections 3 and 4, respectively. When a

0 40 80

0.2

0

0.4

0.6

0.8

1

redundancy ≥ 50%

40%40%

20%20%

0%0%

120
Time step

Redundancy vs node attack on electrical grid

La
rg

es
tc

on
ne

ct
ed

co
m

po
ne

nt
(n

or
m

.)

Figure 6: Effect of network redundancy 𝑟 on the US power

grid where 4 nodes are overloaded using ID. When 𝑟 ≥ 50%
the network is able to redistribute the increased load.

node is attacked it becomes “overloaded”, causing it to fail and
requiring the load be distributed to the neighbors. When defending
a node we increase it’s capacity to protect against attacks.

1 from graph_tiger.cascading import Cascading
2 from graph_tiger.graphs import graph_loader
3
4 params = {
5 'runs': 1, # number of simulations
6 'steps ': 100, # simulation time steps
7 'l': 0.8, # max node load
8 'r': 0.2, # node redundancy
9 'c': int (0.1 * len(graph)), # node capacity approx.
10
11 'robust_measure ': 'largest_connected_component ',
12 'k_a': 30, # attack strength
13 'attack ': 'rd_node ', # attack strategy
14 'k_d': 0, # defense strength
15 'defense ': None , # defense strategy
16 }
17
18 # Load U.S. electrical grid graph
19 graph = graph_loader('electrical ')
20
21 # Run and plot cascading failure simulation
22 cascading = Cascading(graph , ** params)
23 results = cascading.run_simulation ()
24 cascading.plot_results(results)

Listing 4: Cascading failure simulation on U.S. electrical

grid using TIGER

Simulating cascading failures. To help users visualize cascading
failures induced by targeted attacks, we enable them to create vi-
suals like Figure 7, where we overload 4 nodes selected by the ID
attack strategy on the US power grid dataset [31] (𝑙𝑚𝑎𝑥 = 0.8). Node
size represents capacity i.e., larger size→ higher capacity, and color
indicates the load of each node on a gradient scale from blue (low
load) to red (high load); dark red indicates node failure (overloaded).
Time step 1 shows the network under normal conditions; at step 50
we observe a series of failures originating from the bottom of the
network; by step 70 most of the network has collapsed. To assist
users in summarizing simulation results over many configurations,
we enable them to create plots like Figure 6, which shows the effect
of network redundancy 𝑟 when 4 nodes are overloaded by the ID
attack strategy. At 50% redundancy, we observe a critical threshold
where the network is able to redistribute the increased load. For
𝑟 < 50%, the cascading failure can be delayed but not prevented.

5.2 Running Cascading Failures in TIGER

The code block in Listing 4 shows how Tiger users can quickly
setup a cascading failure simulation. There are 3 simulation spe-
cific parameters—the max node lode ‘l’, node redundancy ‘r’, and
maximum node capacity ’c’ (based on betweenness centrality). We
set the attack and defense parameters, similar to Listings 2 and 3,
respectively. The simulation output is a plot measuring the ‘health’
or robustness of the network over time. Users can optionally gener-
ate image snapshots and a video simulation of the cascading failure
on the network data.

5.3 Dissemination of Network Entities

A critical concept in entity dissemination is network diffusion, which
attempts to capture the underlying mechanism enabling network

Cascading Failure on Electrical Grid

step 1step 1 5050 7070

Figure 7: Tiger cascading failure simulation on the US power grid network when 4 nodes are overloaded according to the ID

attack strategy. Time step 1: shows the network under normal conditions. Time step 50: we observe a series of failures

originating from the bottom of the network. Time step 70: most of the network has collapsed.

propagation. In order to augment this diffusion process, Tiger lever-
ages the defense techniques in Section 4 for use with two prominent
diffusion models: the flu-like susceptible-infected-susceptible (SIS)
model, and the vaccinated-like susceptible-infected-recovered (SIR)
model [21]. For example, tominimize the ability of viruses to spread
we can monitor (remove) nodes in the graph to reduce graph con-
nectivity. On the other hand, if want tomaximize network diffusion
e.g., marketing campaign, we can use defense techniques like edge
rewiring or addition to increase graph connectivity. Below, we
highlight the SIS infectious disease model and how Tiger’s defense
techniques can help contain a simulated outbreak.

Design and Implementation. Each node in the SIS model can be
in one of two states, infected 𝐼 or susceptible 𝑆 . At each time step
𝑡 , an infected node 𝑣 has a probability 𝛽 of infecting each of it’s
uninfected neighbors 𝑢 ∈ 𝑁 (𝑣). After this, each infected node 𝑣
has a probability 𝛿 of healing and becoming susceptible again. The
relationship between the birth rate 𝛽 , death rate 𝛿 and the spectral
radius 𝜆1 of the graph has been a widely studied topic. In [30],
they show that the spectral radius of a graph is closely tied to the
epidemic threshold 𝜏 of a network in an SIS model. In particular,
they prove that 𝛽

𝛿
< 𝜏 = 1

𝜆1
. This means for a given virus strength

𝑠 , an epidemic is more likely to occur on a graph with larger 𝜆1.
As such, we say that a virus has an effective strength 𝑠 = 𝜆1 · 𝑏/𝑑 ,
where a larger 𝑠 means a stronger virus [29].

Simulating dissemination of entities. To help users visualize
the dissemination process, we enable them to create visuals like
Figure 1, where we run an SIS computer virus simulation (𝑠 = 3.21)
on the Oregon-1 Autonomous System network [26]. The top of
Figure 1 shows the virus progression when defending 5 nodes
selected by Netshield [29]. By time step 1000, the virus has nearly
died out. The bottom of Figure 1 shows that the virus remains

Step

In
fe
ct
ed

no
de

s
(%

)

0
0

1

10

100

1k 2k 3k

s = 3.21s = 3.21

s = 0s = 0

6.426.42
9.639.63
12.8412.84

s = 3.21s = 3.21s = 0s = 0

6.426.42

9.639.63
12.8412.84

4k 5k 0 1k 2k 3k 4k 5k

w/o defense w/ defense

Virus Dissemination on AS Network

Figure 8: SIS simulation with 5 virus strengths on the

Oregon-1 Autonomous System network. No defense (left),

Netshield defense (right).

endemic without defense. To assist users in summarizing model
results over many configurations, we enable them to create plots
like Figure 8, which show results for 5 SIS effective virus strengths
𝑠 = {0, 3.21, 6.42, 9.63, 12.84} over a period of 5000 steps.

5.4 Running Entity Dissemination in TIGER

The code block in Listing 5 shows how Tiger users can run an
entity dissemination simulation by setting a few key parameters—
the type of entity simulation ‘model’ (e.g., SIS, SIR), the virus birth
rate ‘b’, the virus death rate ‘d’, and the fraction of the network that
starts off infected ‘c’. The simulation output is a plot of network
infection over time. In addition, users can optionally generate image
snapshots and a video simulation of the entity dissemination on
the network.

1 from graph_tiger.diffusion import Diffusion
2 from graph_tiger.graphs import graph_loader
3
4 sis_params = {
5 'runs': 1, # number of simulations
6 'steps ': 5000, # simulation time steps
7
8 'model ': 'SIS',
9 'b': 0.00208 , # virus birth rate
10 'd': 0.01, # virus death rate
11 'c': 0.3, # network % starting infected
12 }
13
14 # Load Oregon -1 Autonomous System graph
15 graph = graph_loader('as_733 ')
16
17 # Run and plot entity dissemination simulation
18 diffusion = Diffusion(graph , ** sis_params)
19 results = diffusion.run_simulation ()
20
21 diffusion.plot_results(results)

Listing 5: Entity dissemination simulation on Oregon-1

Autonomous System network using TIGER

6 CONCLUSION

The study of network robustness is a critical tool in the charac-
terization and understanding of complex interconnected systems.
Through analyzing and understanding the robustness of these net-
works we can: (1) quantify network vulnerability and robustness,
(2) augment a network’s structure to resist attacks and recover from
failure, and (3) control the dissemination of entities on the network
(e.g., viruses, propaganda). While significant research has been con-
ducted on all of these tasks, no comprehensive open-source toolbox
currently exists to assist researchers and practitioners in this im-
portant topic. This lack of available tools hinders reproducibility
and examination of existing work, development of new research,
and dissemination of new ideas. To address these challenges, we
contribute Tiger, an open-sourced Python toolbox containing 22
graph robustness measures with both original and fast approximate
versions; 17 failure and attack strategies; 15 heuristic and optimiza-
tion based defense techniques; and 4 simulation tools. Tiger is
open-sourced at: https://github.com/safreita1/TIGER.

7 ACKNOWLEDGEMENTS

This workwas in part supported by theNSF grant IIS-1563816, GRFP
(DGE-1650044), an IBM fellowship, and a Raytheon fellowship.

REFERENCES

[1] Asma Azizi, Cesar Montalvo, Baltazar Espinoza, Yun Kang, and Carlos Castillo-
Chavez. 2020. Epidemics on networks: Reducing disease transmission using
health emergency declarations and peer communication. Infectious Disease
Modelling 5 (2020), 12–22.

[2] Mathieu Bastian, Sebastien Heymann, and Mathieu Jacomy. 2009. Gephi: an open
source software for exploring and manipulating networks. In Third international
AAAI conference on weblogs and social media.

[3] Alina Beygelzimer, Geoffrey Grinstein, Ralph Linsker, and Irina Rish. 2005. Im-
proving network robustness by edgemodification. Physica A: Statistical Mechanics
and its Applications 357, 3-4 (2005), 593–612.

[4] Ulrik Brandes and Christian Pich. 2007. Centrality estimation in large networks.
International Journal of Bifurcation and Chaos 17, 07 (2007), 2303–2318.

[5] Hau Chan and Leman Akoglu. 2016. Optimizing network robustness by edge
rewiring: a general framework. Data Mining and Knowledge Discovery 30, 5
(2016), 1395–1425.

[6] Hau Chan, Leman Akoglu, and Hanghang Tong. 2014. Make it or break it:
Manipulating robustness in large networks. In Proceedings of the 2014 SIAM
International Conference on Data Mining. SIAM, 325–333.

[7] Paolo Crucitti, Vito Latora, and Massimo Marchiori. 2004. Model for cascading
failures in complex networks. Physical Review E 69, 4 (2004), 045104.

[8] Wendy Ellens and Robert E Kooij. 2013. Graph measures and network robustness.
arXiv preprint arXiv:1311.5064 (2013).

[9] Wendy Ellens, FM Spieksma, P Van Mieghem, A Jamakovic, and RE Kooij. 2011.
Effective graph resistance. Linear algebra and its applications 435, 10 (2011),
2491–2506.

[10] Ernesto Estrada. 2006. Network robustness to targeted attacks. The interplay of
expansibility and degree distribution. The European Physical Journal B-Condensed
Matter and Complex Systems 52, 4 (2006), 563–574.

[11] Linton C Freeman. 1977. A set of measures of centrality based on betweenness.
Sociometry (1977), 35–41.

[12] Scott Freitas, Hanghang Tong, Nan Cao, and Yinglong Xia. 2017. Rapid analysis of
network connectivity. In Proceedings of the 2017 ACM on Conference on Information
and Knowledge Management. 2463–2466.

[13] Scott Freitas, Andrew Wicker, Duen Horng Chau, and Joshua Neil. 2020. D2M:
Dynamic Defense and Modeling of Adversarial Movement in Networks. SDM
(2020).

[14] Arpita Ghosh, Stephen Boyd, and Amin Saberi. 2008. Minimizing effective
resistance of a graph. SIAM review 50, 1 (2008), 37–66.

[15] Aric Hagberg, Pieter Swart, and Daniel S Chult. 2008. Exploring network structure,
dynamics, and function using NetworkX. Technical Report. Los Alamos National
Lab.(LANL), Los Alamos, NM (United States).

[16] Erika Hernadez, Steven Hoagland, and Lindell Ormsbee. 2016. Water distribution
database for research applications. In World Environmental and Water Resources
Congress 2016. 465–474.

[17] Isaac Hernandez-Fajardo and Leonardo Dueñas-Osorio. 2013. Probabilistic study
of cascading failures in complex interdependent lifeline systems. Reliability
Engineering & System Safety 111 (2013), 260–272.

[18] Petter Holme, Beom Jun Kim, Chang No Yoon, and Seung Kee Han. 2002. Attack
vulnerability of complex networks. Physical review E 65, 5 (2002), 056109.

[19] Shlomo Hoory, Nathan Linial, and Avi Wigderson. 2006. Expander graphs and
their applications. Bull. Amer. Math. Soc. 43, 4 (2006), 439–561.

[20] Jian Kang, Scott Freitas, Haichao Yu, Yinglong Xia, Nan Cao, and Hanghang
Tong. 2018. X-rank: Explainable ranking in complex multi-layered networks.
In Proceedings of the 27th ACM International Conference on Information and
Knowledge Management. 1959–1962.

[21] William Ogilvy Kermack and Anderson G McKendrick. 1927. A contribution to
the mathematical theory of epidemics. Proceedings of the royal society of london.
Series A, Containing papers of a mathematical and physical character 115, 772
(1927), 700–721.

[22] Douglas J Klein and Milan Randić. 1993. Resistance distance. Journal of mathe-
matical chemistry 12, 1 (1993), 81–95.

[23] Katherine A Klise, Regan Murray, and Terra Haxton. 2018. An Overview of the
Water Network Tool for Resilience (WNTR). Technical Report. Sandia National
Lab.(SNL-NM), Albuquerque, NM (United States).

[24] Mert Korkali, Jason G Veneman, Brian F Tivnan, James P Bagrow, and Paul DH
Hines. 2017. Reducing cascading failure risk by increasing infrastructure network
interdependence. Scientific reports 7 (2017), 44499.

[25] Mukkai S Krishnamoorthy and Balaji Krishnamurthy. 1987. Fault diameter of
interconnection networks. Computers & Mathematics with Applications 13, 5-6
(1987), 577–582.

[26] Jure Leskovec, Jon Kleinberg, and Christos Faloutsos. 2005. Graphs over time:
densification laws, shrinking diameters and possible explanations. In Proceedings
of the eleventh ACM SIGKDD international conference on Knowledge discovery in
data mining. 177–187.

[27] Fragkiskos DMalliaros, VasileiosMegalooikonomou, and Christos Faloutsos. 2012.
Fast robustness estimation in large social graphs: Communities and anomaly
detection. In Proceedings of the 2012 SIAM International Conference on Data Mining.
SIAM, 942–953.

[28] Giulio Rossetti, Letizia Milli, Salvatore Rinzivillo, Alina Sîrbu, Dino Pedreschi, and
Fosca Giannotti. 2018. NDlib: a python library to model and analyze diffusion
processes over complex networks. International Journal of Data Science and
Analytics 5, 1 (2018), 61–79.

[29] Hanghang Tong, B Aditya Prakash, Charalampos Tsourakakis, Tina Eliassi-Rad,
Christos Faloutsos, and Duen Horng Chau. 2010. On the vulnerability of large
graphs. In 2010 IEEE International Conference on Data Mining. IEEE, 1091–1096.

[30] Yang Wang, Deepayan Chakrabarti, Chenxi Wang, and Christos Faloutsos. 2003.
Epidemic spreading in real networks: An eigenvalue viewpoint. In 22nd Interna-
tional Symposium on Reliable Distributed Systems, 2003. Proceedings. IEEE, 25–34.

[31] Duncan J Watts and Steven H Strogatz. 1998. Collective dynamics of ‘small-
world’networks. nature 393, 6684 (1998), 440.

[32] Yongxiang Xia, Jin Fan, and David Hill. 2010. Cascading failure in Watts–Strogatz
small-world networks. Physica A: Statistical Mechanics and its Applications 389, 6
(2010), 1281–1285.

https://github.com/safreita1/TIGER

	Abstract
	1 Introduction
	1.1 Contributions

	2 TIGER Robustness Measures
	2.1 Example Measures
	2.2 Measure Implementation & Evaluation
	2.3 Running Robustness Measures in TIGER

	3 TIGER Attacks
	3.1 Attack Strategies
	3.2 Comparing Strategies
	3.3 Running Network Attacks in TIGER

	4 TIGER Defenses
	4.1 Defense Strategies
	4.2 Comparing Strategies
	4.3 Running Network Defenses in TIGER

	5 TIGER Simulation Tools
	5.1 Cascading Failures
	5.2 Running Cascading Failures in TIGER
	5.3 Dissemination of Network Entities
	5.4 Running Entity Dissemination in TIGER

	6 Conclusion
	7 Acknowledgements
	References

