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Figure 1: Our method, Nested Fusion, radically accelerates the exploratory analysis of nested measurement datasets by learning
the latent structure at high resolution to produce distributions of phenomena at a greater fidelity and scientific impactfulness
than previous approaches. In the figure the DOURBES target location is shown, out of over a hundred locations onMars scanned
by the Perseverance Rover at the time of writing.

ABSTRACT
The Mars Perseverance Rover represents a generational change
in the scale of measurements that can be taken on Mars, however
this increased resolution introduces new challenges for techniques
in exploratory data analysis. The multiple different instruments
on the rover each measures specific properties of interest to sci-
entists, so analyzing how underlying phenomena affect multiple
different instruments together is important to understand the full
picture. However each instrument has a unique resolution, mak-
ing the mapping between overlapping layers of data non-trivial.
In this work, we introduce Nested Fusion, a method to combine
arbitrarily layered datasets of different resolutions and produce a
latent distribution at the highest possible resolution, encoding
complex interrelationships between different measurements and
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scales. Our method is efficient for large datasets, can perform in-
ference even on unseen data, and outperforms existing methods of
dimensionality reduction and latent analysis on real-world Mars
rover data. We have deployed our method Nested Fusion within a
Mars science team at NASA Jet Propulsion Laboratory (JPL) and
through multiple rounds of participatory design enabled greatly
enhanced exploratory analysis workflows for real scientists. To
ensure the reproducibility of our work we have open sourced our
code on GitHub at https://github.com/pixlise/NestedFusion.

CCS CONCEPTS
• Applied computing→ Physical sciences and engineering;
• Computing methodologies→ Learning latent representa-
tions; • Information systems→Datamining; •Human-centered
computing → Scientific visualization.
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1 INTRODUCTION
In scientific data analysis the initial exploratory phase of visualizing
and conceptualizing the relevant empirical phenomena in a dataset
is both an essential aspect for effective work and comparatively un-
der studied in the context of scientific applications, where skipping
such inductive explorations in favor of immediately utilizing known
models for analysis is the de facto standard. However, recent work
has shown how unanticipated or anomalous phenomena can often
mislead such analysis, motivating a workflow that at least starts
with purely empirical exploration of data in the initial phases of
work after making measurements in order to have a more informed
prior of the distribution of actual phenomena within a dataset be-
fore applying the more rigorous scientific models to ensure the
chosen models are appropriate [28]. While common data-centric
techniques of exploratory analysis such as dimensionality reduc-
tion visualization have proven to be very effective in many domains
of scientific inquiry [2, 3, 8, 13, 14, 16, 17, 19, 22, 27, 29], in domains
with multiple measurement apparatuses of different resolutions and
scales, existing techniques can fail to model some of the phenomena
we wish to discover. This is because the standard formalization for
dimensionality reduction techniques is that of a single dataset of
measurements of identical shape which corresponds one to one
with the set of objects and patterns between objects that the analy-
sis aims to visualize. However it is often the case that underlying
phenomena are differentiated at levels that do not align with the
resolutions of measurement each apparatus perfectly [28]. Rather,
there may be multiple methods of measurement which each elu-
cidate different aspects of an underlying structure but which all
have varying resolution scales and thus are sensitive to the different
properties of various aggregations of the structure.

One such domain where scientists require more powerful ex-
ploratory analysis tools is the work done by the PIXL Science team
with the Mars Perseverance Rover at NASA (National Aeronau-
tics and Space Administration). In service of the high-level goal
of searching for signs of a history of life on Mars, scientists are
interested in the fine-grain mineral structure of target locations
on the Martian surface [7]. The Perseverance Rover contains two
(among many) scientific instruments to assist in this task: the Plan-
etary Instrument for X-ray Lithochemistry (PIXL) instrument [1],
which includes an X-ray fluorescence (XRF) spectrometer, and a
Micro-Context Camera (MCC) for multi-spectral imaging. When
observing a specific target location of geological interest, the rover
will use both of these instruments to conduct two co-aligned scans
as shown in Figure 1. While both of the instruments scan over the
same physical location, their resolutions are much different, where
for each scan point, a single XRF spectrum corresponds to a larger
patch of approximately 100 MCC imaging pixels. At the same time,
each instrument elucidates different aspects of the underlying min-
eralogy of the target. While the spatial precision of each MCC pixel

corresponds much more closely to individual homogeneous min-
eral grains, it lacks a nuanced depth of information to accurately
differentiate minerals based on chemistry. On the other hand, each
XRF spectrum produces a detailed quantified distribution of the
chemical composition of the scan point, but the larger diameter
of this point may encompass multiple grains of different minerals
thus producing an aggregate chemical distribution. The ultimate
scientific question is about understanding the distribution of under-
lying minerals. While both measurements offer extremely powerful
signals concerning this distribution, neither alone encompasses all
the possible information to explore, leading to the need for mod-
eling these different measurement scales together. To tackle these
significant scientific challenges, we present the following major
contributions:

(1) A novel problem formulation tailored to exploratory analy-
sis of nested measurement datasets, which consist of irregularly
overlapping measurements of multiple scales (Sec 3.1). This
formulation is rooted in addressing the practical needs of PIXL
scientists at NASA who analyze XRF and MCC data collected
by the Mars Perseverance Rover.

(2) The Nested Fusion algorithm, a new model for latent anal-
ysis and dimensionality reduction for nested measurement
datasets (Sec 3.2), This method is significantly more effective
than alternatives, yielding latent encodings at a resolution far
higher than what existing dimensionality reduction techniques
can achieve. We evaluate the effectiveness of Nested Fusion
both qualitatively within the context of initial data exploration
and quantitatively in data reconstruction fidelity. Nested Fusion
outperforms the state of the art in dimensionality reduction
for nested measurement datasets, providing more interpretable
and practically useful results (Sec 4).

(3) Deployment of Nested Fusion in scientific practice within
the PIXL team for the Mars Perseverance Rover, enabling scien-
tifically meaningful visual interpretation and efficient discov-
ery of cross-modal patterns (Sec 5). We analyze how Nested
Fusion is utilized in practice and how it fits within the sci-
entists’ existing analytic workflows. To ensure reproducibil-
ity of our technique and findings, we have open-sourced it at
https://github.com/pixlise/NestedFusion

2 BACKGROUND AND RELATEDWORK
In this section, we introduce the scientific problem statement and
dataset overview from the PIXL instrument on the Mars Perse-
verance Rover, define our formalization of nested measurement
datasets, and go over related work in scientific exploratory data
analysis and dimensionality reduction.

2.1 Mars Perseverance PIXL Data
The PIXL instrument aims to measure the mineral structure of small
rock samples (called targets) on the surface of Mars contributing to-
ward the larger inquiry towards any potential evidence of a history
of life on Mars. For each individual target on the martian surface
multiple scans are taken. First is the MCC Multi-spectral imaging
camera, which takes a series of four images illuminated by specific
wavelengths of near-visible light: Near-Infrared (NIR), Green, Blue,
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and Ultraviolet (UV). This produces a single color image for each
target with 4 primary channels, as opposed to the standard 3 chan-
nel RGB, and is often analysed using the 16 distinct ratios between
them. Each image will contain on average about 500,000 of these
16 channel pixels, spanning a region of approximately 100 square
centimeters with each pixel corresponding to a resolution of approx-
imately 15 microns. At roughly the same time a scan is taken of the
same target with the PIXL instrument for X-Ray spectroscopy. This
instrument produces much more detailed quantitative data, consist-
ing of a grid of X-Ray fluorescence spectra which are quantified to
represent the distribution of elemental weight percentages at each
scan point, we call this distribution a quantification. Each scan can
consist of between 1000 and 10,000 individual spectra (depending
on the particular shape of the target) covering a smaller region of
approximately 30 square millimeters. Each scan point is measured
with a beam diameter of 50-200 microns1, thus corresponding to a
region covering approximately 100 MCC pixels as shown in Figure
1.

Thus far, at the time of writing, during the time that the Perse-
verance Rover has been in operation, there have been 103 target
locations scanned producing a total of 295,602 52-dimensional (the
number of unique elements included in all quantifications) quan-
tified spectra, as well as 26,966,169 MCC pixels. However, not all
scans include both data types and so for this work focusing on
combining information from both measurements, we are restrict-
ing to a total of 103,005 scan points which each contain a single
quantification as well as 100 corresponding MCC pixels.

2.2 Related Work
Previous work in collaboration with PIXL scientists has shown
how data science techniques can form an essential component
of their scientific workflow by focusing specifically on modeling
anomalies and visualizing distinct empirical phenomena[28]. This
work focuses on the problem of initial visualization and thus on
dimensionality reduction as an effective technique for enabling
such visualization for the high dimensional PIXL data.

Dimensionality reduction techniques such as UMAP [15], T-
SNE [24], MDS [12], Isomap [21], and the most commonly used
PCA [10] are fairly ubiquitous in a variety of scientific domains
[2, 3, 13, 14, 16], and even specifically XRF spectroscopy [22], as
well as Mars multi-spectral imaging[17].

Another conceptualization that can produce comparable visu-
alizations is the approach of latent analysis which takes a more,
generally Bayesian, probabilistic framework to the problem of learn-
ing low dimensional representations. These approachesmostly stem
from the development of variational autoencoders (VAE) [11], and
different latent models have been introduced to handle many sci-
entific problems [8, 27, 29] including planetary science[19] among
many other domains.

3 PROPOSED METHOD: NESTED FUSION
Grounded in understanding from previous work with PIXL sci-
entists [28] our aim is to develop a method for visualizing and
determining the distribution of mineral phenomena within each
PIXL target, and to assist in their identification based on their rela-
tionship between the past history of targets. Focusing on targets
where both XRF and MCC data are present and overlapping, we
hope to enable work to discover new patterns that each individual
instrument cannot differentiate independently. While scientific in-
terpretation is the end goal, the specific interpretations (i.e., “we
see a grain of olivine here or a potential aqueous intrusion there”)
enabled by the method are out of the scope of this work. Therefore
we introduce a precise formalized problem statement which aims
to properly encode the scientific priors and goals of the problem
with specific consideration to the non-standard mixed scale mea-
surements present in PIXL data, while simultaneously laying the
foundation for how such methods can be more easily generalized
to new domains. Finally after introducing the problem formulation
we will describe our proposed method, Nested Fusion, which looks
to solve this problem.

3.1 Problem Formalization of Nested
Measurements

As Figure 1 shows the nested hierarchical structure of PIXL data
is not immediately amenable to standard data science techniques
barring some flattening operation which leads to over aggregation
and loss of resolution (see Joint Models in Section 3.3). Thus we
introduce a formalization of nestedmeasurement datasetswhich
we will use to model this structure and subsequently perform better
analysis on the data in a more natural manner, while also outlining
precisely the requirements that any other datasetmustmeet in order
to utilize the methods introduced in Section 3 in other domains.

We recursively define a nestedmeasurement dataset𝑀 as consist-
ing of a tuple of two components:𝑀 = (𝑋, 𝑆). The first component
𝑋 = {𝑥𝑖 ∈ R𝑑 }𝑁

𝑖=1 is simply a standard dataset of 𝑁 independent
and identically distributed samples of 𝑑 dimensional data repre-
senting the particular measurements at some specific scale. Then
𝑆 is what we define as the nested scale. The nested scale is a tuple
(𝑀′, 𝜂) of another nested measurement dataset 𝑀′ = (𝑋 ′, 𝑆′) as
well as a nesting function (𝜂 : 𝑋 → 2𝑋

′
) which maps each data

point in 𝑋 to a set of corresponding data points in 𝑋 ′ that cover
the same underlying physical and latent area. In order to terminate
this regress there must be a final scale 𝑋∅ which has no further
nested scale and thus is notated as ∅. Having no further nested
scale means that𝑋∅ is the highest resolution available in the nested
measurement dataset, and so we refer to it as the maximum reso-
lution latent scale since our aim to model latent structure at this
maximum resolution.

The key assumption is that all of the information at lower res-
olution scales supervenes on latent information at the maximum

1This beam diameter is energy dependent and since there is a nonlinear transforma-
tion between the energy levels of the spectrum and the final quantified elemental
distribution where each element is quantified using the full energy range, we treat
the upper range of the beam diameters as representing the region encompassed in a
quantified scan point.
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Figure 2: Model architecture and data processing pipeline for Nested Fusion as applied to PIXL data. High resolution latent
vectors are encoded given a scan point containing an XRF quantification vector and collection of MCC imaging pixels.

resolution. That is, that there is some more basic structure under-
lying the dataset that is approximately modeled at the maximum
resolution as an unobserved latent variable, where each sample
𝑥∅
𝑖
∈ 𝑋∅ is generated from a random process involving the latent

value 𝑧𝑖 that has a prior probability distribution 𝑝 (𝑧), producing
some conditional distribution 𝑝 (𝑥∅ |𝑧) that we aim to learn2. For
all other scale samples with nesting function 𝜂 we then define the
𝛽 correspondence which returns the set of all latents at the base
maximum resolution that correspond to a sample 𝑥𝑖 :

𝛽 (𝑥∅𝑖 ) := {𝑧𝑖 } (1)

𝛽 (𝑥𝑖 ) :=
⋃

𝑥 ′
𝑗
∈𝜂 (𝑥𝑖 )

𝛽 (𝑥 ′𝑗 ) (2)

The supervenience assumption then can be restated probabilisti-
cally that all lower resolution scale variables are generated from
the conditional distributions 𝑝 (𝑥 |𝛽 (𝑥)), and thus are conditionally
independent of measurements at any scale other than the maxi-
mum. This structure is outlined in the graphical model for the PIXL
dataset in Figure 3.

While seemingly fairly abstract and obscure, this underlying
structure and supervenience assumptions of a nested measurement
dataset is in fact pervasive in the sciences [5, 6]. The natural sciences
in particular commonly share the physicalist reduction assump-
tion (at least within a single domain), that any given composite
object of study is fully reducible to the set of underlying physical
objects of which it is composed [20, 25]. This assumption necessi-
tates that if multiple kinds of measurement apparatus measure an
overlapping subject in time and space, then there must be some
correspondence relation between the two measurement modalities.
Furthermore this assumption enables us to study the intersections
between these different layers of composed abstraction, as each
class of composite structure is often best observed using separate
kinds of measurement that very often do not have perfectly aligned

2Note for notation, we include indices for actual measurement samples, while not
including indices when referring to the random variable that generates the samples.

scale and resolution. More complex composite structures will tend
to exhibit additional complexity and depth (note the high dimen-
sionality of the PIXL quantified spectra) however at the expense
of necessarily being more spatially diffuse. While higher resolu-
tion measurements may be possible at the expense of more limited
depth.3

3.2 The Nested Fusion Algorithm
The previous section describes the formalized problem of learn-
ing latent maximum resolution scale variables from nested data.
One important aspect to note when introducing our solution is
that the formulation of the latent variables at this scale is itself al-
ready a modeling approximation. In reality we expect fundamental
structures within a domain to exist at finer scales than are directly
accessible, and so we simply use the highest resolution available
in any given nested measurement dataset as a proxy scale for a
‘true’ latent 𝑧. What this lends support to is the use of variational
inference as a method to efficiently learn approximate distributions
of 𝑧, which is acceptable as we do not in general actually have
strong enough priors about the structure and properties of a ‘true’
𝑧 to justify other methods which have significant computational
and other drawbacks when compared to widespread empirical suc-
cess of variational auto-encoding models. Therefore the approach
taken in this work, Nested Fusion, is a variational auto-encoder
model[11] structured to work on nested measurement datasets.

Figure 2 describes Nested Fusion’s architecture. Without loss of
generality, we explain how the framework is applied to the PIXL
data/scenario presented in Figure 1. Specificallywe showhow a scan
point consisting of both low-resolution elemental quantification
values and nested high-resolution imaging pixels, is jointly used to
learn high-resolution latent vectors. The latents are learned though
optimizing via stochastic variational inference[9] both encoder
and decoder models to maximally reconstruct the original scan

3Think of the accuracy vs precision distinction, where here generally increasing
resolution increases spatial precision but makes it more difficult for each individual
measurement to be accurate.
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points4. The 1-, 2-, or 3-dimension latents would then be used for
visualization by PIXL Scientists.

First, let us consider the encoder step. For the encoder model,
which estimates the conditional latent distribution given the data
𝑞(𝑧 |𝑀), we must choose a class of distributions for the latent prior
𝑝 (𝑧) and specify the relevant class of distributions for the data type
of each measurement scale. We focus on a basic prior model of
latents being standard normal (𝑧 ∼ N(0, I)) which we can use to
compare to other methods of dimensionality reduction.

The task for the encoder then is to take the nested structure𝑀
as input, and output the reparamtetrized latent distribution param-
eters 𝜇𝑧 and 𝜎𝑧 for each 𝑧𝑖 at the maximum resolution latent scale.
In order to do this, we must choose a network architecture that can
adequately handle the structure of𝑀 and/or perform some trans-
formations on𝑀 to ensure it is compatible with the chosen encoder
network structure. The approach taken by Nested Fusion is to con-
vert the hierarchical set of heterogeneous data points into a single
sequence of tokens that can be used as input to an encoder model.5
This is done by first using a learned mapping 𝑇𝑋 which is a linear
transformation for each data scale to a common high dimensional
token dimension (determined as the sum of all dimensionalities of
each data modality to ensure no bottleneck at this stage) that can be
used as a common shape for the encoder sequence. Then a sequence
is built where starting at the lowest resolution dataset 𝑋 in𝑀 , for
each data point 𝑥 ∈ 𝑋 we append the corresponding token at the
front of the sequence, and then find the sequence for the nested
scales of that token recursively and append the resultant nested
sequence (here using addition/summation notation to represent
sequence concatenation).

𝑆𝑒𝑞(𝑥∅𝑖 ) := [𝑇𝑋 (𝑥∅𝑖 )] (3)

𝑆𝑒𝑞(𝑥 𝑗 ) := [𝑇𝑋 (𝑥 𝑗 )] +
∑︁

𝑥 ′∈𝜂 (𝑥 )
𝑆𝑒𝑞(𝑥 ′) (4)

Once a sequence of tokens is generated this sequence is passed
into some sequence-to-sequence encoder model which outputs
a sequence of corresponding estimated latent parameterization
means and variances. However only the output positions actually
corresponding to 𝑥∅

𝑖
inputs are then taken to sample a latent from

the reparamtetrized distribution 𝑧𝑖 ∼ N(𝜇𝑧 , 𝜎𝑧).
For decoding, remember the conditional distribution for data

points defined as 𝑝 (𝑥 |𝛽 (𝑥)). Thus, what is required for decoding is
a unique model for each scale in𝑀 , where a model either takes as
input a single latent in the case of the maximum resolution scale or
a set of latents as defined by the correspondence set 𝛽 . For the latent
scale decoder, a simple multi-layer perceptron is an appropriate
architecture, while for the higher levels needing to decode sets of
latents we can use transformers [26]. Importantly, in order to the
prevent the potential pitfall of the model merely using positional
information to encode information only used in the aggregate de-
coding step not corresponding to the actual specific latent at each

4In addition to the other components of the KL Divergence loss used in variational
inference which integrates some priors on the latents as well
5The ordered sequence is an effective encoding for the nested structure as it can
maintain locality within each scale and sequence models in language are perhaps the
best examples of contemporary models which effectively encode nested structures
(grammar in the case of language).

point, our approach uses a transformer without positional embed-
dings in this step as they are order invariant, thus ensuring that the
full distribution of latents, rather than a few arbitrary picked out
latents, properly encodes lower resolution aggregate information.

Finally, given the encoder and decoder models, as well as the
latent prior distributions, the models are trained using stochastic
variational inference on the evidence lower bound as is standard
for a VAE based architecture[11]; implemented in our case using
the probabilistic programming framework, Pyro[4].

To evaluate our method of Nested Fusion we test the model per-
formance on the real, large-scale Mars Perseverance PIXL dataset
introduced in Section 2.1 comparing to existing dimensionality re-
duction and latent analysis techniques. As analysis of this unique
dataset representing the frontier of Mars exploration is the raison
d’être for this work as a whole, we specifically focus on evaluation
with direct relevance towards the scientific goals and capabilities
of scientists actively working at NASA JPL and around the globe
on this data.

First, in order to utilize nested fusion we have to define the
relevant nested measurement dataset formulation for the PIXL
dataset, which we define as:

𝑀𝑃𝐼𝑋𝐿 := (𝑋𝑞, ((𝑋𝑝 ,∅), 𝜂𝑞𝑝 )) (5)

This includes 𝑋𝑞 which consists of 103,005 of quantified spectra
which are represented as 52 dimensional non-negative real valued
vectors whose elements are the elemental weight percentage values
produced from PIXL XRF scan points. Here𝑋𝑝 is the set of 1,983,506
MCC multispectral imaging pixels which are 16 dimensional non-
negative real valued vectors6. Finally we have 𝜂𝑞𝑝 which is the
nesting function of XRF scan points to corresponding pixels. This
is generated by utilizing the known range of XRF beam diameters
of the PIXL instrument being approximately 150 microns, as well
as the calibrated location alignment of MCC images with XRF scan
points. This alignment allows us to have a shared coordinate system
and thus calculate physical distance between scan-point centroids
and MCC pixels. Thus we can define the nesting function to select
all pixels within 75 microns of an XRF scan point, which results in
the 100 pixel aggregations previously discussed:

𝜂𝑞𝑝 (𝑥𝑞) = {𝑥𝑝 ∈ 𝑋𝑝 | distance(loc(𝑥𝑞), loc(𝑥𝑝 )) ≤ 150𝜇𝑚} (6)

3.3 Comparing with Alternative Models
To demonstrate the effectiveness of Nested Fusion, we compare it
with alternative dimensionality reduction models that can combine
both scales of data. Since this problem is non-standard we must
introduce the set of alternative models that allows utilization of
existing methods to our problem. We categorize these models into
three types based on how they handle the nested structure of the
PIXL nested measurement dataset, Nested Fusion (our method),

6This number is less than what you would expect given that each scan point with a
quantification covers an area of 100 pixels, however in reality many of these areas
overlap, meaning the same pixel can be included in multiple different scan points.
Our formalization of nested measurement datasets allows this without issue and in
fact it is preferred to strict partitioning as we can better models the actual resolution
of dependency for each measurement. The only issue occurs when converting back
into physical space such as with the color plot from Figure 1. We address this by
simply averaging the multiple produced pixel level decoded inferences for overlapping
pixels, however introducing more sophisticated techniques of dis-aggregation is a very
promising direction for future work
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Figure 3: Graphical Models representing different latent variable formulations for the PIXL MCC nested measurement dataset.
From left to right we have: (Left) Nested Fusion, representing the latent corresponding to the maximum resolution datascale and
informing higher level measurements through aggregated functions; (Center) the concatenative model where there is a latent
at the maximum resolution scale which affects higher level corresponding measurements not in aggregate but independently;
and (Right) the joint model where a latent exists at low resolution and determines the whole distribution of all high resolution
measurements.

Concatenative Models, and Joint Models. We describe these three
classes of models in Figure 3 using the language of Bayesian graph-
ical models, which illustrates how these classes encompass a full
taxonomy of problem conceptualizations for nested measurement
datasets7. However within each of these classes any particular
model type (e.g., UMAP or VAE) can be used. For our comparisons
we took both alternative modeling frameworks and for each trained
three representative models. First representing the most common
approach to dimensionality reduction used ubiquitously in practise
is Principle Component Analysis (PCA). Then to represent state of
the art dimensionality reduction we used UMAP[15] over t-SNE[24]
as it provides state of the art performance, has a well documented
history of applications in science, and is among the techniques
least sensitive to hyperparameters, and is much more computa-
tionally efficient for our scale of data. Finally we also trained a
variational autoencoder to represent the most standard approach to
generative latent analysis. Since Nested Fusion and the variational
autoencoder methods are agnostic to the specific neural network
sizes and architectures used, for our evaluation we trained multiple
networks using simple multi-layer perceptron models (with the
exception of using a transformer encoder for the Nested Fusion
decoding step as described in Section 3) with hidden layer sizes
from 64 to 256 and a number of hidden layers from 4 to 16 and
selected the best-performing models at each latent dimensionality.
Nested Fusion’s open-source repository provides the pretrained
tested models at https://github.com/pixlise/NestedFusion. These
methods together cover the most common latent analysis and di-
mensionality reduction techniques used in practice, including both
parametric and non-parametric methods. Furthermore, as PIXL sci-
entists are the ultimate users who visualize the latents in 1-, 2-, and
3- dimensions we compare Nested Fusion with these alternatives
at such dimensions.

Joint Models. The first class of alternative model we will consider
are joint models which attempt to model the joint distribution of
a low resolution data point and it’s entire corresponding nested
scales in a single latent. For the PIXL dataset we can describe this

7This set only covers all possible alternatives when limited to two nested scales such
as PIXL, when increasing the number of nestings the number of alternative methods
produced by combining Joint and Concatenative models become combinatoric

framework as trying to find a single latent for each XRF scan point:

∀𝑥𝑞
𝑖
∈ 𝑋𝑞 . 𝑧𝑖 ↔ (𝑥𝑞

𝑖
, 𝜂𝑞𝑝 (𝑥𝑞𝑖 )) (7)

Concatenative Models. The other class of model considered are
concatenative models, where each high resolution data point is used
as the latent scale, and lower resolution corresponding measure-
ments are simply concatenated to the high resolution sample vector.
For PIXL we describe this as taking each XRF scan quantification
and duplicating it and concatenating on top of each individual MCC
pixel and using this to learn a high resolution latent:

∀𝑥𝑞
𝑖
∈ 𝑋𝑞 . ∀𝑥𝑝

𝑗
∈ 𝜂𝑞𝑝 (𝑥𝑞𝑖 ) . 𝑧 𝑗 ↔ (𝑥𝑞

𝑖
, 𝑥

𝑝

𝑗
) (8)

4 EVALUATION:
NESTED FUSION EFFECTIVENESS

4.1 Conceptual Drawbacks of Alternative
Methods Compared to Nested Fusion

Despite covering the full set of possible alternative approaches
(given the nested measurement dataset framework), each of these
method classes has substantial conceptual drawbacks, illustrated
in Figure 4. A joint model has a much more difficult encoding task
where each latent value is overloaded with encoding the whole
set of 𝜂 (𝑥𝑞

𝑖
) making fidelity with low latent dimensionality very

difficult. Furthermore it will also only produce a latent at the lowest
possible resolution, the exact opposite of the high resolution latents
in Nested Fusion. Concatentative models can perform somewhat
better, as they produce latents as similarly high resolution to Nested
Fusion. However the concatenative method of combining layers
erases all scale contextualization of each high resolution data point,
thus encoders and decoders do not have access to more complex
distributional information within each nesting scale, which poten-
tially can have an effect on the accuracy of final low resolution
estimates when such information is important. For instance, if we
consider a case where two scan points includes the same kinds
of minerals but in different proportion, this will affect the values
of 𝑥𝑞

𝑖
and 𝑥

𝑞

𝑗
in such a way that any concatenative model must

necessarily produce different embeddings even for the exact same
kind of mineral! This false encoding of the confounding distribu-
tional information on the individual scale is inextricable from the
concatenative method. However since Nested Fusion has access

5974

https://github.com/pixlise/NestedFusion


Nested Fusion: A Method for Learning High Resolution Latent Structure of Multi-Scale Measurement Data on Mars KDD ’24, August 25–29, 2024, Barcelona, Spain

Figure 4: Comparison between alternate models and their relative downsides. The left column shows the dependence mappings
from the learned latent spaces to the twomeasurement spaces for Nested Fusion. The center column shows how a joint encoding
learns a lower resolution representation which overloads the decoder for high resolution imaging data. The right column shows
how a concatenative model ignores to full spatial context of the low resolution measurements by only forming a mapping
from a single high resolution point.

to this distributional information for its encoder and decoder, in
principle it could learn something close to a ’true embedding’ which
the concatenative model strictly could not. Therefore, given these
conceptual drawbacks of the entire range of alternate models to
Nested Fusion, we have reason to prefer it based on our prior and
theoretical understanding of what the different techniques can learn
in principle.

4.2 Qualitative Evaluation
It is important to restate that the success or failure of any of the
presented latent analysis and dimensionality reduction techniques
is determined entirely within the context of their actual use, for
the purposes of this paper being in their application within PIXL
science. Previous work has outlined the basic structure of how ma-
chine learning techniques have been successfully applied within
the PIXL science team, by enabling an iterative semantic phenom-
ena modeling process[28] that helps scientists map out the space
of considerations before continuing with standard domain model-
ing. Therefore we begin our evaluation of the different methods of
latent analysis at the same point that PIXL scientists begin their
analysis by visualizing the resultant latent distributions produced
by each method directly, as two dimensional heatmaps, in order
to try to discover the distinct phenomena to consider in their later
modeling. Figure 5 shows the output of each of the methods applied
to the Dourbes target from Figure 1. Specifically, for such a two
dimensional heatmap plot of the latents scientists expect to see
a small number of distinguishable regularities which can either
be regions visualized in the heatmap as distinct areas of higher
density in bright green or as separable clusters which need not
be high density but otherwise must be otherwise identifiable as a
standalone feature to consider.

In Figure 5, notice how all of the joint methods (right column)
learn a comparatively small set of regularities, each showing only
three distinct modes. While this regularity and differentiability is

certainly a positive, we know from previous authoritative analysis
on this specific target [23] that there are at least more than three
relevant phenomena that must be distinguished and so we have
reasonably high confidence that these representations are overly
abstracting. The high resolution methods (left column) are more
varied. Concatenative VAE, like the joint models, produces three
primary clusters, while Concatenative PCA encodes a continuous
global structure with limited local differentiation, which in this
context makes mineral identification much more difficult. Finally
concatenative UMAP produces an extremely complex distribution
which shows no consistent high-density regions. Like a Rorschach
inkblot, such complexity cannot serve as a reliable basis for building
trustworthy shared interpretations between scientists focused on
finding specific, repeatable, and understandable regularities. Indeed,
the UMAP visualization produced in this context is perhaps the least
scientifically helpful of all the options for PIXL scientists working on
mineral identifications. Finally, we see that Nested Fusion (top left)
produces the most distinguishable structure consisting of two large
high-density regions on the left (which each are themselves clearly
composed of a mixture of multiple overlapping but non-identical
modes) accompanied by two more lower-density clusters on the
right and another on the left. The distribution produced by Nested
Fusion matches the scientific priors much more closely, where a
reasonable number (more than three and less than a few hundred)
of identifiable regularities likely corresponding with minerals can
be clearly seen.

To further explore this effect, we compare the latent sub dis-
tributions of the highest performing methods (UMAP and Nested
Fusion) when selecting known mineral grains to see the reliability
of how well the latent space can be used to identify minerals. Based
on existing well analyzed data in the Dourbes target[23] we looked
to compare methods based on how well they could differentiate
known distinct minerals. In Figure 6 the red region corresponds
to known olivine while the green region corresponds to known
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Figure 5: Comparison of 2D Latent Distributions from dif-
ferent methods applied to Dourbes target (RGB map of MCC
Image shown in top right). Axes are unitless latent values.
High resolution models (left column: Nested Fusion and con-
catenative models ) displayed with 300 bins across each axis,
while low resolution jointmodels (right column) has 200 bins
due to the differing number of samples in each model type.

pyroxene, two highly distinct mineral types present at the Dourbes
target. We then can select the sets of latent samples corresponding
to these two spatial regions in the dataset and compare each latent
sub-distributions. What we want to see is a high degree of differen-
tiability between the distributions of these two classes of mineral.
Using the Wasserstein Distance metric[18] for empirical distribu-
tions, we found the Nested Fusion distance to be 1.416 while UMAP
was 1.057. This shows Nested Fusion performing nearly 50% better

Figure 6: Comparison of Nested Fusion and Concatenative
UMAP wit latent dimension 2 in differentiating distinct min-
erals in the Dourbes target. In green is shown a region of the
target identified as Pyroxene while in red is a region iden-
tified as Olivine based on existing analysis[23]. Comparing
the latent sub-distributions of these two samples, Nested Fu-
sion produces a distribution which has a greater degree of
separation between the different minerals.

than UMAP on this metric of mineral differentiability. Owing to
the diffuse structure of the UMAP embedding when compared to
the highly dense structure of Nested Fusion, the space was less
clearly able to form distinct modes of different minerals, which
is the primary goal of utilizing dimensionality reduction in this
application context.

These results show how Nested Fusion produces a distribution
more effective at identifying and representing distinct minerals or
other phenomena which aligns precisely with what PIXL scientists
hope to achieve in the scientific workflow of exploratory analysis,
showing qualitatively the clear superiority of Nested Fusion to the
alternative methods in assisting effective science.

4.3 Quantitative Evaluation
Besides the qualitative properties of the distributions that make
them practically scientifically useful, PIXL scientists also require
that the latent models are trustworthy enough in retaining most
of the meaningful information present in the underlying data, and
since we do not know a-priori what is or is not meaningful we must
ensure that a representation retains as much information as possible
about the original data to reconstruct it completely. Good fidelity
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then is a necessary but not sufficient condition for effective utiliza-
tion, in particular considering the fidelity of quantifications which
scientists trust as more authoritative when grounding mineral iden-
tification. Thus, we compare Nested Fusion with alternative models
using reconstruction fidelity, a standard metric in evaluating auto-
encoding models, to quantify how much information is preserved
in the latent encodings. For each model we calculate the coefficient
of determination 𝑅2 for both 𝑋𝑞 as well as 𝑋𝑝 reconstructions in
Table 1.

Our results show that Nested Fusion significantly outperforms
all joint models (Joint VAE, Joint UMAP, and Joint PCA) at each
reduced latent dimensionality used by PIXL scientists. This is ex-
pected, as explained Section 4.1, because the same dimensional
latent values are tasked with a much greater amount of encoding
and thus would be expected to perform worse at the low dimension-
alities tested, and it confirms the observations from the qualitative
evaluation that important information is likely being lost in the en-
coding. Concatenative models however tend to perform relatively
better in these metrics. Among the concatenative models, concate-
native PCA performs universally worst across all metrics, which is
not surprising due to PCA being a linear model with limited model-
ing capacity. Concatenative VAE and UMAP both perform similarly
in reconstructing the imaging layer as effectively as Nested Fusion.
However, this layer contributes significantly less towards building
trust for scientific interpretations as a standalone measurement but
is most effective only when augmented with the more solid source
of scientific semantic grounding in the XRF quantifications. When
considering then the quantification reconstructions, what we find is
that as predicted in Section 4.1 Nested Fusion significantly outper-
forms concatenative VAE in reconstructing the XRF quantification
layer. Finally, concantenative UMAP’s 𝑋𝑞 reconstruction fidelity
is lower but comparable to Nested Fusion’s — however, given the
other significant drawback of UMAP’s inability to use this accu-
racy to practically assist in scientific exploration, its reconstruction
performance is essentially irrelevant.

In summary, Nested Fusion attains higher reconstruction fidelity
than the state of the art in dimensionality reduction and latent
modeling while producing substantially more useful latent codes
for scientific analysis.

5 SCIENTIFIC DEPLOYMENT AND IMPACT
The ultimate importance of Nested Fusion is not found in its evalu-
ation metrics but in its ability to have scientific impact by assist-
ing PIXL scientists in visualizing and exploring combinations of
datasets they simply could not easily or efficiently do otherwise.
Towards this end, we deployed Nested Fusion in multiple capaci-
ties within the PIXL science team. The primary method thus far
scientists have been able to utilize Nested Fusion is through its
standalone implementation which is now open source at https:
//github.com/pixlise/NestedFusion.

With this implementation, PIXL scientists are able to easily visu-
alize the distribution of multiple kinds of latent encodings across
many targets at once. PIXL scientists choose to visualize these dis-
tributions in a number of ways, including direct distributions in
latent space (see Figure 5) as well as visualizing various mappings
into color overlaying the target image such as the plot in Figure 1.

dim(𝑧) = 1 dim(𝑧) = 2 dim(𝑧) = 3
Model 𝑅2𝑝 𝑅2𝑞 𝑅2𝑝 𝑅2𝑞 𝑅2𝑝 𝑅2𝑞

Nested Fusion 0.88 0.92 0.97 0.98 0.97 0.99
Joint VAE 0.63 0.59 0.81 0.86 0.84 0.93
Joint PCA 0.74 0.02 0.75 0.44 0.75 0.64
Joint UMAP - - 0.68 0.65 0.70 0.63
Concatenative VAE 0.89 0.81 0.94 0.90 0.99 0.93
Concatenative PCA 0.87 0.02 0.88 0.47 0.89 0.65
Concatenative UMAP - - 0.96 0.96 0.98 0.97

Table 1: Model reconstruction fidelity, measured as recon-
struction fidelity 𝑅2 values for both the MCC imaging layer
𝑋𝑝 (denoted as 𝑅2𝑝 ) and the XRF quantification layer 𝑋𝑞 (de-
onted as 𝑅2𝑞) for latent dimensions of 1,2, and 3 needed by
PIXL scientists. Nested Fusion outperforms all models across
all latent dimensions on 𝑅2𝑞 (highlighted in bold font), the
crucial metric used by PIXL scientists when assessing the
scientific trustworthiness of methods.

These two methods together allow scientists to see both abstract as
well as spatial patterns and regularities in the data.

By forming a latent space over the whole history of PIXL data,
and an encoder that can efficiently process this new data before
having to retrain, new data can be quickly visualized and broken
down into a few key regularities which can be compared to histor-
ical precedent of regions or even individual grains which bare a
strong resemblance to regions or grains in the new dataset. This
then helps to form a better initial assessment of the minerals present
at a target and thus substantially speed up the overall identifica-
tion process. This transforms the workflow of initial exploratory
analysis, which historically would take the roughly 10-person team
of spectroscopists approximately 21 days in collaboration to come
to an initial determination of minerals into one which a single
scientist can generate instantly a latent distribution and through
refinement generate an identification of comparable quality in a
matter of hours.

Nested Fusion provides a fundamentally new way for PIXL scien-
tists to quickly visualize distributions of phenomena that span mul-
tiple measurement types and scales and thus explore new data more
efficiently and effectively than was previously possible. This has
provided a lesson for any interested applied data scientist: increas-
ing the alignment between machine learning problem statement
and scientific problem ontology, in this case by more accurately
modeling multiple scale relationships, is an absolutely essential
component of achieving genuine impact with these tools. There-
fore we hope that future work will continue to develop ways in
which we can improve the very frame from which we pose data
science problems just as much as improving the methods for how
we solve them, in order to make sure we can not only do better
data science, but just do great science.
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