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Fig. 1. Our CLOAK attack conceals multiple adversarial cloaked textures in 3DGS scenes using Spherical Harmonics, causing the 3DGS
representation of the car to become adversarial at different view points (red dots). For example, (A) when viewed from the top, the car
appears as a suitcase, (B) “car” detection confidence decreases, (C) and when viewed directly from behind, displays a “stop sign.”

Abstract

With 3D Gaussian Splatting (3DGS) being increasingly
used in safety-critical applications, how can an adver-
sary manipulate the scene to cause harm? We intro-
duce CLOAK, the first attack that leverages view-dependent
Gaussian appearances—colors and textures that change
with viewing angle—to embed adversarial content visi-
ble only from specific viewpoints. We further demonstrate
DAGGER, a targeted adversarial attack directly perturb-
ing 3D Gaussians without access to underlying training
data, deceiving multi-stage object detectors e.g., Faster R-
CNN, through established methods such as projected gra-
dient descent. These attacks highlight underexplored vul-
nerabilities in 3DGS, introducing a new potential threat
to robotic learning for autonomous navigation and other
safety-critical 3DGS applications.

1. Introduction

3D Gaussian Splatting (3DGS) has rapidly gained pop-
ularity due to its efficiency in novel-view synthesis and

real-time rendering of complex scenes, outperforming tra-
ditional methods like Neural Radiance Fields (NeRFs)
[1]. These advantages have led to growing interest in
safety-critical domains such as autonomous driving [2, 9],
robotic navigation, and grasping [7], where rapid data
generation and accurate sim2real transfer are essential.
A typical 3DGS scene consists of 3D Gaussians initial-
ized from structure-from-motion point clouds, optimized
through backpropagation to refine positions, rotations, col-
ors via Spherical Harmonics, scaling, and alpha blending.
Despite the increasing adoption of 3DGS, vulnerabilities in
its optimization processes and representations remain un-
derexplored. We discovered that the view-dependent na-
ture of Spherical Harmonics (SH)—commonly used in real-
time rendering for realistic shading, enables adversaries to
embed concealed adversarial appearances into 3DGS, each
visible only from specific viewing angles (Fig. 1). For in-
stance, an object such as a car could appear benign from
ground level yet take on the appearance of asphalt or road-
way when viewed aerially, effectively hiding from overhead
surveillance systems (see Fig. 1, 2). Furthermore, gradient-



Fig. 2. Adversarial Gaussian splats demonstrating view-dependent
color changes enabled by spherical harmonic rendering. We high-
light a single splat with a light border for easier tracking of color
changes across views, revealing its transition from green to gray
when rotating from a side view (frames A–B) to an overhead view
(frames C–E).

based adversarial methods like Projected Gradient Descent
(PGD) can also be generalized to manipulate the Gaussian
scene representation directly (Fig. 3), causing misclassifi-
cations and misdetections in downstream object detection
tasks. Our findings reveal critical yet underexplored vulner-
abilities inherent in 3DGS, highlighting a novel avenue for
adversarial machine learning research and motivating the
need for robust defensive strategies. To highlight these vul-
nerabilities, our main contributions are:
1. We introduce the CLOAK attack–to the best of our

knowledge, the first attack to conceal multiple adver-
sarial cloaked textures in 3DGS using Spherical Har-
monics, causing the scene to become adversarial at
different view points. We demonstrate CLOAK on
YOLOv8, causing missed detections and misclassifica-
tions. CLOAK stands for Concealed Localized Object
Attack Kinematics.

2. We introduce the DAGGER attack, a generalization
of the PGD technique to 3DGS scenes. DAGGER di-
rectly manipulates 3DGS, targeting two-stage object de-
tection models such as Faster R-CNN without needing
access to the original image training data. DAGGER
stands for Direct Attack on Gaussian Gradient Evasive
Representations.

3. An open-source implementation on GitHub1 to sup-
port reproducibility, further research, and defense devel-
opment.

2. Related Work
Adversarial attacks in the 2D space are well-established,
and the corresponding vulnerabilities are extensively stud-
ied. However, such studies are not prevalent regarding 3D
spaces [3]. Recently, differentiable renderers have been
used to perform gradient optimization of components in a
scene, which can be used to create highly realistic scenes
where perturbations are applied to geometry, texture, pose,
lighting, and sensors. This results in physically plausible
objects that could be transferred to the real world. Adver-
sarial ML researchers have also recently investigated ex-
ploiting novel views in NeRFs to create template inversion
attacks to fool facial recognition systems [6]. e.g., syn-

1https://github.com/poloclub/3D-Gaussian-Splat-
Attack

thesizing novel views from limited data, and gaining ac-
cess to systems using a 3D model of a face and the re-
sulting new views. Importantly, these attacks do not re-
quire white-box access to the targeted model weights, high-
lighting a lower barrier for adversaries and raising con-
cerns due to their practical feasibility. To date, only two
works have explored limited threat model vulnerabilities in
3DGS. One introduces a computational cost attack targeting
the split/densify stages of the 3DGS algorithm by perturb-
ing training images, significantly increasing training time,
scene complexity (in terms of Gaussian count), and mem-
ory usage, while reducing rendering frame rates; however,
this approach does not target downstream models or tasks
[4]. The second work targets only a single model (CLIP
ViT-B/16), employing data poisoning through segmentation
and perturbation of target regions within images to induce
targeted and untargeted misclassifications, and it does not
directly manipulate the underlying 3DGS scene representa-
tion [8].

3. Attack Methods
3.1. Threat Models
3DGS synthesizes novel views by training a volumetric rep-
resentation (using Gaussians and SH coefficients) from im-
ages, presenting adversaries with vulnerabilities at different
pipeline stages (Fig 1). Our CLOAK attack models an ad-
versary who can only manipulate training data, embedding
concealed adversarial content visible solely from specific
viewpoints, without direct access to internal scene parame-
ters.

In contrast, the DAGGER attack considers a stronger ad-
versary who directly modifies the Gaussian representation,
optimizing parameters like position, SH, scaling, rotation,
and transparency. The resulting manipulated scene is ren-
dered and passed to a downstream object detection model,
causing targeted or untargeted misclassifications (Fig. 3).

3.2. CLOAK Attack
Our CLOAK attack leverages the view-dependent appear-
ance properties of 3DGS to conceal adversarial content
within seemingly benign 3D scenes. By exploiting SH en-
coding, we can create objects with different appearances
based on viewing angle.

In 3DGS, each Gaussian is assigned SH coefficients
rather than a fixed RGB color. These SH functions define
how color varies with the incident viewing direction, allow-
ing a Gaussian’s appearance to change dynamically depend-
ing on the observer’s perspective. During training, SH en-
code color information for varying camera views, enabling
scenes to appear benign or adversarial depending on view-
point.

To hide adversarial views within an object, we begin with
a benign textured version of a 3D model alongside one or

https://github.com/poloclub/3D-Gaussian-Splat-Attack
https://github.com/poloclub/3D-Gaussian-Splat-Attack


Fig. 3. DAGGER manipulates Gaussian attributes to induce mis-
detections on Faster R-CNN. On the top row, the car’s color is
perturbed in a targeted attack, resulting in high-confidence mis-
classifications as a “person”, “elephant”, and “stop sign.”. In the
second row, the stop sign is attacked, causing the model to mis-
classify it as a “tv”, “train”, and “bird”.

more adversarial textures. A training image dataset is cre-
ated by rendering the object with benign textures from one
set of camera views and adversarial textures from targeted
camera views. The attack trains the 3DGS scene so that
certain viewpoints appear completely normal while others
reveal hidden adversarial content.

This technique enables sophisticated concealment. For
example, a car can be designed with an adversarial appear-
ance from a top view while maintaining benign appearances
from all other angles (Fig. 1,Fig. 4). Walking 360 degrees
around such a vehicle on the ground appears completely
normal, as the top of the car viewed from ground level
shows no indication of the hidden adversarial content.

We formulate our CLOAK attack as follows. Let D =
{(xi, ci)}Ni=1 be the benign dataset, where each image xi ∈
X is associated with a camera pose ci ∈ C. The attacker
selects a subset of targeted camera poses C∗ ⊂ C and gen-
erates adversarial images x̃i for each viewpoint ci ∈ C∗,
modifying the appearance of a target object while preserv-
ing the scene’s visual realism. The attack replaces each
original image xi with its adversarial counterpart x̃i for ci ∈
C∗, forming the attacked datasetD′ = {(A(xi, ci), ci)}Ni=1,
where

A(x, c) =

{
x̃, if c ∈ C∗,

x, otherwise.
(1)

Training the 3DGS model on D′ ensures that from non-
targeted viewpoints c /∈ C∗, the target object retains its be-
nign appearance, while from viewpoints c ∈ C∗, the adver-
sarial modifications become embedded in the learned scene.
This results in an attack that remains concealed under initial
observations but reveals manipulated content from attacker-
specified angles.

3.3. DAGGER Attack
The DAGGER attack assumes a more powerful adversary
with access to the 3DGS scene representation and a target
downstream model (Fig. 4).

Fig. 4. YOLOv8 detections over adversarial viewpoints attacked
by CLOAK.

Unlike CLOAK, this attack does not require access to
training data, assuming white-box access to the scene and
downstream model. A 3DGS scene is comprised of a data
structure holding attributes of each 3D Gaussian to repre-
sent: SH coefficients (color) c, xyz coordinates p ∈ R3,
scaling factor s, rotation r, and transparency α. Training of
a 3DGS scene uses differentiable rendering, meaning that
gradients flow to Gaussian attributes to iteratively adjust-
ing them to represent the training data in a process simi-
lar to backpropagation for training a deep neural network.
Borrowing from existing adversarial gradient optimization
attacks on 2D images [5] (and 3D scenes), we know that
an attacker with access to a target model, can optimize the
scene representation (already shown in differentiable ren-
dering attacks). Suppose this attacker can access the 3DGS
scene file. In that case, they can carry out a gradient op-
timization PGD attack by targeting one or more 3DGS at-
tributes and optimizing it to maximize some loss function.

In our DAGGER attack, let G = {g1, . . . , gn} be the set
of 3D Gaussians, where each gi = (pi, ci, si, ri, αi). A
differentiable renderer R(G) maps these parameters to 2D
images, which are then passed to a downstream model M .
The adversary selects a subset Θ of parameters to manip-
ulate, aiming to maximize a loss L

(
M(R(G)), y

)
under a

constraint ∥Θ−Θ0∥ ≤ ϵ. Formally,

max
G′

ℓ
(
M

(
R(G′)

)
, y
)

subject to ∥Θ−Θ0∥ ≤ ϵ, (2)

and uses a projected gradient step

Θt+1 ← Π∥Θ−Θ0∥≤ϵ

(
Θt + η∇Θt

ℓ
(
M(R(G)), y

))
, (3)

where Θ0 are the original parameters, η is the step size, and
Π is the projection operator. This iterative procedure yields
a modified G′ whose rendered output misleads M .



4. Experiments

4.1. CLOAK Experiments

We conducted experiments using Blender (www.blender.
org) with the Cycles renderer to create photorealistic ren-
derings of a car captured from 210 distinct camera angles
covering a hemispherical region, enabling complete 360-
degree visualization (Fig. 1). We embedded three concealed
adversarial appearances among benign views: a normal ap-
pearance from 110 angles (Fig. 1D), a “road” texture at 80
overhead angles (Fig. 1A), and a “stop sign” texture at 20
angles directly behind the car (Fig. 1C). Training the 3DGS
scene with this dataset successfully created an object whose
concealed adversarial textures emerged distinctly from spe-
cific viewpoints—overhead for the “road” texture and rear
angles for the “stop sign.” Diagonal views obscure these
adversarial modifications, potentially misleading both hu-
man observers and object detector into assuming consis-
tency across viewpoints.

To evaluate attack effectiveness, we conducted a black-
box assessment using YOLOv8 object detection. The scene
was rendered with camera viewpoints smoothly transition-
ing from benign ground-level angles toward adversarial
overhead and rear angles. Rendered frames analyzed by
YOLOv8 (Fig. 4) demonstrated significant reductions in de-
tection confidence, including complete missed detections
when adversarial textures were fully visible. In particular,
YOLOv8 detected the car successfully from 80 out of 110
benign viewpoints but failed to detect it in 78 out of 80 ad-
versarial overhead (“road”) views.

4.2. DAGGER Experiments

In our direct attack experiments targeting 3D Gaussians
(Fig. 3), we began by rendering a 3D scene in two parts, cre-
ating a composite scene. We maintained a Gaussian splat in-
dex corresponding to the targeted object splats while mask-
ing gradients for all non-targeted scene splats, ensuring that
perturbations and optimizations were applied exclusively to
the targeted object. For each targeted viewpoint, we per-
turbed the color attributes of the Gaussians using SH co-
efficients, controlling the perceived RGB color from spe-
cific angles. Using white-box access to a Faster R-CNN ob-
ject detection model, we iteratively rendered the composite
scene, computed the detection loss, and applied projected
gradient descent (PGD) updates to the SH coefficients. Af-
ter each perturbation step, the adjusted SH coefficients are
converted to RGB during rasterization, and the scene is re-
rendered for subsequent optimization steps. This method
effectively enabled targeted manipulation of object appear-
ance from specified viewpoints, significantly influencing
object detection outcomes. For example, we successfully
optimized Faster R-CNN to misclassify a “car” as an “per-
son” with consistently high detection confidence (> 70%)

in just 11 iterations using PGD ℓ2-norm, with attacker bud-
get ϵ = 5.0, and learning rate α = ϵ · 2/steps.

5. Conclusion and Ongoing Work
In this paper, we demonstrated unexplored vulnerabilities
in the emerging 3D Gaussian Splatting (3DGS) framework,
highlighting security implications for safety-critical appli-
cations. Our proposed CLOAK and DAGGER attacks show
how adversaries can exploit training-time and post-training
vulnerabilities to deceive state-of-the-art object detection
models. We release our methods openly to support future
research on securing 3DGS-based systems.
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