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Abstract

Differentiable rendering techniques like1

Gaussian Splatting and Neural Radiance2

Fields have become powerful tools for3

generating high-fidelity models of 3D ob-4

jects and scenes. Their ability to pro-5

duce both physically plausible and differ-6

entiable models of scenes are key ingredi-7

ent needed to produce physically plausible8

adversarial attacks on DNNs. However,9

the adversarial machine learning commu-10

nity has yet to fully explore these capabil-11

ities, partly due to differing attack goals12

(e.g., misclassification, misdetection) and13

a wide range of possible scene manipu-14

lations used to achieve them (e.g., alter15

texture, mesh). This survey contributes a16

framework that unifies diverse goals and17

tasks, facilitating easy comparison of ex-18

isting work, identifying research gaps, and19

highlighting future directions—ranging20

from expanding attack goals and tasks to21

account for new modalities, state-of-the-22

art models, tools, and pipelines, to under-23

scoring the importance of studying real-24

world threats in complex scenes.25

1 Introduction26

Differentiable rendering has emerged as a power-27

ful tool for solving inverse problems in vision and28

graphics by enabling gradient propagation through29

the rendering process. Recent methods like Neural30

Radiance Fields (NeRF) [Mildenhall et al., 2020]31

and 3D Gaussian Splatting [Kerbl et al., 2023] en- 32

able novel view synthesis from limited images to re- 33

construct 3D models or scenes. These advancements 34

have spurred open-source tools, such as PyTorch3D1 35

and user-friendly platforms2 that allow creating tex- 36

tured 3D models from photos. 37

Differentiable rendering has also exposed vulnera- 38

bilities in DNNs by enabling adversarial attacks. Ad- 39

versaries exploit DNN gradients to optimize inputs, 40

training, or outputs for malicious purposes, leading 41

to misclassifications in systems such as stop signs in 42

cars, LiDAR [Cao et al., 2019], facial recognition , 43

and 3D models [Xiao et al., 2019]. Similarly, differ- 44

entiable rendering allows attackers to optimize 3D 45

scene parameters (objects, materials, lighting) via 46

loss gradients. Research on differentiable rendering- 47

based attacks is scattered across: 48

1. Attack goals: e.g., inducing misclassifications or 49

motion/depth errors; 50

2. Attackable components: e.g., preprocessing 51

steps or during inference; 52

3. Scene manipulation: e.g., targeting texture, ge- 53

ometry, or combinations thereof. 54

In other words, progress in adversarial attacks us- 55

ing differentiable rendering has been made, but sys- 56

tematic comparisons, summaries of strengths, and 57

research gap identification remain challenging. Fig- 58

ure 1 shows how our survey addresses this gap by 59

organizing tasks like texture manipulation, illumina- 60

tion changes, and 3D mesh alterations, emphasizing 61

both techniques and their potential exploitation by 62

adversaries. 63

1https://pytorch3d.org
2https://poly.cam
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Fig. 1: Visual overview of our unifying survey framework that, by unifying the diverse goals and tasks in identifying
attackable components and manipulating scene representations, enables systematic summarization and comparison with
existing differentiable rendering related adversarial attack research.

1.1 Related Survey and Methodology64

This is the first survey to focus on task-based dif-65

ferentiable rendering capabilities for 3D adversarial66

attacks. Existing work separates differentiable ren-67

dering and adversarial research. Kato et al. briefly68

mention adversarial applications in their differen-69

tiable rendering survey but lack attack details [Kato70

et al., 2020]. Since then, NeRF and 3D Gaus-71

sian Splatting have gained prominence, requiring72

discussion. Surveys on NeRF [Xie et al., 2022;73

Tewari et al., 2022; Gao et al., 2023; Mittal, 2024]74

and 3D Gaussian Splatting [Chen and Wang., 2024;75

Tosi et al., 2024] do not address adversarial use. Ex-76

isting adversarial attack surveys cover 2D/3D models77

[Li et al., 2024b], robustness and defenses [Miller et78

al., 2020], or image classification [Machado et al.,79

2023] but omit differentiable rendering.80

We reviewed 28 works from top venues in com-81

puter vision, ML, and graphics, covering differen-82

tiable rendering methods (e.g., NeRF, 3D Gaussian83

Splatting) and their use in adversarial attacks. Us-84

ing a task-based framework, we categorized attacker85

goals—texture, illumination, and mesh manipula-86

tion—to clarify methodologies and vulnerabilities.87

As a newer field, differentiable rendering research88

began in 2014, with adversarial applications emerg-89

ing in 2019.90

1.2 Contributions 91

C1. We present a comprehensive, attacker-task 92

guided survey on adversarial attacks using differ- 93

entiable rendering, incorporating a use-inspired 94

approach (Fig. 1). Our framework positions each 95

work by attacker objectives and differentiable ren- 96

dering techniques, defining the attack surface based 97

on feasible scene manipulations of the scene repre- 98

sentations (Sec. 3). 99

• Our methodology links goals to tasks, providing 100

a structured comparison of works and identifying 101

research gaps. 102

• Table 1 explains differentiable rendering’s role in 103

attacks, relevant methods, and current strengths 104

and limitations. 105

C2. We provide comprehensive categorizations 106

of attack methods, highlighting their impact and 107

real-world implications (Sec. 3). We show a “Tar- 108

get List” of attacked models, including object de- 109

tection, image classification, and others along with 110

attacker access levels (Table 2). These resources en- 111

able researchers to build on existing work, compare 112

outcomes, and develop new techniques to address 113

adversarial threats using differentiable rendering. 114

C3. We identify key future research directions 115

to address the growing threat of adversarial at- 116

tacks (Sec. 6). Priorities include developing robust 117

defenses, exploring novel attack strategies, and in- 118



vestigating the physical plausibility of these attacks.119

2 Attacker Goals120

To better understand how differentiable rendering121

is used in adversarial attacks, we describe an at-122

tacker using the threat model concept to delineate123

their goals, capabilities, and knowledge in the con-124

text of the attack they wish to carry out [Li et al.,125

2024b]. Using an attacker-task guided perspec-126

tive, we connect the attacker goals to required tasks127

and sub-tasks (Sec. 3) that are used in differen-128

tiable rendering attacks. Attacker goals encompass129

any threat affecting the integrity of a DNN’s in-130

tended task [Papernot et al., 2016b; Li et al., 2024b;131

Wiyatno et al., 2019]. In this survey, we identify132

five attacker goals that are used in attacks on deep133

learning models using differentiable rendering:134

2.1. Misclassification - the model predicts an incor-135

rect class (untargeted) or a specified incorrect class136

(targeted) [Papernot et al., 2016a].137

2.2. Misdetection - manifested as various errors:138

nothing is detected (evasion), improper bounding139

box localization, duplicate detections, or detecting140

background as an object, or combinations thereof141

[Bolya et al., 2020].142

2.3. Reduce Confidence - the target class is not pre-143

dicted with high confidence [Papernot et al., 2016a].144

145

2.4. Misestimate Motion - the model misestimates146

the motion of objects in the scene caused by adversar-147

ial movements or objects [Schmalfuss et al., 2023].148

149

2.5. Misestimate Depth - the model misestimates150

depth, affecting the model’s ability to perceive dis-151

tances. [Zheng et al., 2024].152

In Table 1, we categorized our 28 survey papers153

as S=Survey (3), M=Metrics (1), or A=Attack (24).154

Of our 24 Attack papers, we found that 18 works155

chose goals of inducing misclassifications, 17 in-156

duced misdetections, and 10 induced reduction in157

model confidence while only 1 work each pursued158

attack goals of misestimation of motion or depth.159

3 Identify Attackable Components160

To achieve the attacker goals in Sec. 2, one must161

identify which components can be manipulated by162

analyzing the attack surface (Sec. 3) and understand-163

ing 3D scene representations.164

Attack Surface 165

The attack surface includes all data processing stages 166

[Papernot et al., 2016b] in Fig. 1, from sensor inputs 167

and pre-processing to model inference and output 168

actions. In differentiable rendering, this surface ex- 169

tends to the renderer and scene representation, giving 170

adversaries multiple potential entry points. For in- 171

stance, a robot scanning its 3D environment has: 172

• Sensor Inputs (e.g., camera, LiDAR). 173

• Pre-processing steps (e.g., generating 2D images 174

or point clouds). 175

• Inference by the DNN model. 176

• Predictions (e.g., labels, bounding boxes, segmen- 177

tation). 178

• Actions or decisions based on model output. 179

An attack’s effectiveness hinges on the adversary’s 180

access level: white-box , black-box , or combina- 181

tion thereof , classified in Table 2. In differentiable 182

rendering, attackers manipulate scene elements (Sec. 183

3), such as object textures or environmental factors 184

(e.g., adversarial weather [Schmalfuss et al., 2023]) 185

to deceive the DNN. 186

Analyze Scene Components 187

In differentiable rendering attacks, the 3D scene rep- 188

resentation is the main target. We categorize its 189

components under: Geometry (explicit or implicit 190

[Mildenhall et al., 2020; Kerbl et al., 2023]), Tex- 191

ture (color and reflectance), Position/Pose (object 192

location/orientation), Illumination (light sources, 193

e.g., sun or lamps), and Sensors (camera/LiDAR 194

properties like resolution or field of view). Identify- 195

ing these components helps attackers craft manipu- 196

lations that produce realistic, adversarial inputs to 197

DNN models. 198

4 Manipulate 3D Scene 199

Differentiable rendering enables gradient-based ma- 200

nipulation of any scene elements. With white-box 201

access to victim models, attackers can use loss gra- 202

dients with respect to scene representations to guide 203

such manipulations. This section reviews common 204

manipulations on 3D scene representations, includ- 205

ing geometry, texture, pose, illumination, and sen- 206

sors. Among the surveyed works, texture attacks are 207

the most prevalent (15), followed by geometry (7), 208

pose (5), illumination (2), and sensors (1). 209
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[Abdelfattah et al., 2021] A ICIP
[Alcorn et al., 2019] A CVPR
[Bolya et al., 2020] M ECCV
[Byun et al., 2022] A arXiv
[Cao et al., 2019] A arXiv

[Dong et al., 2022] A NeurIPS
[Huang et al., 2024] A CVPR

[Li et al., 2024b] S ACM CSUR
[Leheng et al., 2023] A arXiv

[Li et al., 2024a] A arXiv
[Liu et al., 2019] A ICLR

[Machado et al., 2023] S ACM
[Maesumi et al., 2021] A arXiv

[Meloni et al., 2021] A ICMLA
[Papernot et al., 2016b] A EuroS&P
[Papernot et al., 2016a] A EuroS&P

[Schmalfuss et al., 2023] A ICCV
[Shahreza and Marcel, 2023] A TPAMI

[Suryanto et al., 2022] A CVPR
[Suryanto et al., 2023] A ICCV

[Tu et al., 2021] A CoRL
[Wang et al., 2022] A AAAI

[Wiyatno et al., 2019] A arXiv
[Xiao et al., 2019] A CVPR
[Yuan et al., 2019] S TNNLS
[Zeng et al., 2019] A CVPR

[Zheng et al., 2024] A CVPR
[Zhou et al., 2024] A ICML

Table 1: Overview of representative works on adversarial attacks using differentiable rendering methods. Each row is
one work; each column corresponds to a required attacker task or goal. A work’s relevant goal or task is indicated by a
colored cell. S = Survey, M = Metrics, A = Attack.

4.1 Attacks on Scene Geometry210

Mesh. Attackers use differentiable render-211

ing to generate adversarial meshes by per-212

turbing vertex positions to minimize the213

cross-entropy loss towards the target label. The ad-214

versarial meshes are re-rendered as inputs to victim215

models. Beyond Pixel Norm-Balls [Liu et al., 2019]216

introduced a differentiable rendering framework for217

generating adversarial geometry V ′ by propagating218

gradients through a rendering pipeline via chain rule:219

V ′ ← V − γ
∂C

∂I

∂I

∂N

∂N

∂V
, (1)

where V are vertex positions, N per-face normals,220

and γ the attack strength. MeshAdv [Xiao et al.,221

2019] used Neural Mesh Renderer to perturb ver-222

tices, attacking classifiers and object detectors like223

YOLO-v3. TT3D [Huang et al., 2024] created ad-224

versarial geometry via NeRF and marching cubes225

but faced scalability challenges due to optimization 226

overhead [Tewari et al., 2022]. Distracting Down- 227

pour [Schmalfuss et al., 2023] attacked optical flow 228

models by adding scene-specific spatiotemporally 229

consistent particulate geometry (e.g., rain or snow) 230

to create false motion signals in various datasets. 231

Point Cloud. LiDAR-ADV [Cao et al., 2019] 232

used a differentiable LiDAR simulator to per- 233

turb point clouds, converting the initially non- 234

differentiable features into differentiable ones with 235

smoothing. Two other works perturbed point cloud 236

objects and converted them to textured meshes to 237

target multi-modal systems [Abdelfattah et al., 2021; 238

Tu et al., 2021]. 239

Geometry Post-Processing and Stabilization. 240

Post-perturbation processing maintains realism and 241

avoids topological issues, such as self-intersections 242

or non-manifold meshes. Techniques like Lapla- 243
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Image
ResNet-18
ResNet-34
ResNet-50

ResNet-101
ResNet-152

AlexNet
VGG-16
VGG-19

SqueezeNet
DenseNet

DenseNet-121
Inception

Inc-ResNet
EfficientNet

MobileNet-v2
ViT-B/16

DeiT-B
Swin-B
Mixer-B

Semantic Seg.
Mask-RCNN
Object Det.

YOLO-v2
YOLO-v3
YOLO-v4
YOLO-v5
YOLO-v7
YOLO-X

EfficientDet
Faster-RCNN

Dynamic-RCNN
Sparse-RCNN

Cascade-RCNN
DETR

SSD
PVT

FCOS3D
PGD-DET
DETR3D
BEV-DET

Grounding DINO
Point Cloud
Fr-PointNet

Opt. Flow Est.
FlowNet
SpyNet

RAFT
GMA

FFormer
Face Recog.

ArcFace
Elastiface

FaceX-Zoo
Depth Est.

Monodepth2
Depthhints
Manydepth

Robustdepth
Fused

MMF
VLP
BLIP

Table 2: DNNs attacked by differentiable rendering. Each
column is one work; each row is a model.

cian smoothing , regularization loss , and Chamfer 244

distance loss ensure realistic and stable adversarial 245

geometry. For instance, Laplacian smoothing min- 246

imizes deviations between original and adversarial 247

vertex, while Chamfer distance loss penalizes dis- 248

similarities between point clouds P and Q. Depth 249

completion and lighting approximation from Tu et 250

al. [Tu et al., 2021] enhance realism by restricting 251

adversary scale within axis-aligned bounding boxes. 252

4.2 Attack Scene Texture 253

Texture adversarial attacks manipulate an 254

object’s appearance by perturbing its color, 255

pattern, or light reflection properties. Us- 256

ing differentiable rendering, the model’s loss gra- 257

dient is used to perturb the texture mappings (e.g., 258

UV maps) via world-aligned methods that optimize 259

2D textures, UV map-based methods that directly 260

optimize 3D textures, and neural-rendered methods 261

that dynamically generate textures from 3D repre- 262

sentations [Zhou et al., 2024]. 263

Multi-Object Texture Attacks. Two works ex- 264

plore multi-object texture attacks to study transfer- 265

ability. Meloni et al. [Meloni et al., 2021] create poi- 266

soned data by perturbing texels using a saliency map 267

from a non-differentiable renderer. Byun et al. [Byun 268

et al., 2022] demonstrate transferability by applying 269

2D adversarial textures to various 3D objects, achiev- 270

ing successful impersonation and dodging attacks 271

against facial recognition classifiers. 272

Adversarial Camouflage. Adversarial camou- 273

flage targets vehicles and humans. For vehicles, FCA 274

[Wang et al., 2022] applied adversarial textures to 275

an Audi e-Tron in CARLA scenes using the Neural 276

Mesh Renderer (NMR) , while DTA [Suryanto et al., 277

2022] used EoT for texture projections for a Tesla 278

Model 3 and ACTIVE [Suryanto et al., 2023] made a 279

further improvement with tri-planar mapping, allow- 280

ing complex shapes. Li et al. [Li et al., 2024a] con- 281

ducted a flexible physical camouflage attack (FPA) 282

using diffusion models to generate UV-map-based 283

textures, improving the environmental adaptability 284

in neural rendering. RAUCA [Zhou et al., 2024] 285

extended this by incorporating environmental condi- 286

tions via an encoder-decoder Environmental Feature 287

Extractor (EFE) for optimized textures. For humans, 288

Maesumi et al. [Maesumi et al., 2021] developed 289

adversarial clothing using UV maps and SMPL mod- 290

els, using Blender’s subdivision surface modifier to 291

improve texture resolution for more effective attacks. 292



Texture Attacks on Autonomous Driving Sys-293

tems. Abdelfattah et al. attacked object textures by294

treating vertex colors as learnable parameters, reduc-295

ing YOLOv3 detection in cascaded models used in296

self-driving [Tu et al., 2021]. Adv3D [Leheng et al.,297

2023] used NeRF with semantic branch augmenta-298

tion along with EoT to enhance physical transfer-299

ability and reduce the confidence of LiDAR detec-300

tor, while 3D2Fool [Zheng et al., 2024] developed301

object-agnostic adversarial patches via EoT and tex-302

ture conversion to attack monocular depth estimation303

models.304

Texture Post-Processing and Stabilization. To305

enhance the appearance and physical transferabil-306

ity of adversarial textures, many works incorporate307

post-processing techniques such as hyperparameter308

tuning, Total Variation (TV) loss, Smooth loss, and309

Non-Printability Score (NPS). TV loss [Mahendran310

and Vedaldi, 2015] penalizes differences between ad-311

jacent texture pixels, reducing noise and promoting312

smoothness:313

TV (x) =
∑
i,j

(
(xi,j+1−xij)

2+(xi+1,j−xij)
2
) 1

2 .

NPS [Sharif et al., 2016] assesses the physical print-314

ability of textures by evaluating pixel proximity to315

printable RGB triplets P ⊂ [0, 1]3:316

NPS(p̂) =
∏
p∈P

|p̂− p|,

where a low score indicates higher printability.317

These methods ensure adversarial textures are both318

visually plausible and physically realizable.319

4.3 Attack Scene Illumination320

Illumination manipulation in differentiable321

rendering attacks is underexplored due to322

its global impact, but Liu et al. [Liu et al.,323

2019] and Zeng et al. [Zeng et al., 2019] demonstrate324

its potential. Liu et al. used spherical harmonic light-325

ing for global adjustments, optimizing coefficients326

via the chain rule (Eq. 1) to preserve realism while at-327

tacking DNNs. Zeng et al. manipulated point lights,328

creating adversarial lighting to mislead DNNs.329

4.4 Attack Scene Sensors330

While many attacks test robustness to331

camera angle changes, Shahreza et332

al. [Shahreza and Marcel, 2023] directly333

manipulated camera parameters for attacks. Using 334

NeRF, they optimized camera rotations to find face 335

poses capable of impersonating target identities in fa- 336

cial recognition models. Their method reconstructs 337

3D faces from 2D facial templates, enabling practi- 338

cal presentation attacks, such as digital screen replay 339

or printed photographs, which can be further ex- 340

tended to create wearable face masks for physical 341

impersonation. 342

4.5 Attack Scene Object Pose/Translation 343

DNNs are vulnerable to subtle pose or 344

position changes, with tools like 3DB 345

[Leclerc et al., 2022] available for vulnerability ex- 346

ploration. Using differentiable rendering, attackers 347

can generate precise object poses or translations to 348

induce misclassification in arbitrary settings. Alcorn 349

et al. [Alcorn et al., 2019] demonstrated that Incep- 350

tionv3 misclassifies 97% of the pose space for Im- 351

ageNet objects recognized in their canonical poses, 352

with adversarial poses transferring at high rates to 353

AlexNet, ResNet-50, and YOLOv3. Similarly, Zeng 354

et al. [Zeng et al., 2019] demonstrated adversarial 355

poses misleading Visual Question Answering mod- 356

els resulting in wrong scene descriptions. ViewFool 357

[Dong et al., 2022] trained NeRF models on 3D ob- 358

jects from BlenderKit3, sampling 100 images per 359

model, and demonstrated that ViT-B/16 was more 360

robust to pose attacks than ResNet-50. 361

5 Digital and Physical Attack Domains 362

In this section, we focus on the challenges of creating 363

and evaluating attacks in both digital and physical 364

domains (see Table 1) and the tools used for attack. 365

5.1 Attacks in the Digital Domain 366

Digital attacks often rely on simulations for con- 367

trolled testing. However, since differentiable ren- 368

derers (e.g., Mitsuba, PyTorch3D) often lack simula- 369

tion features, researchers use non-differentiable tools 370

with simulation features instead. RAUCA [Zhou et 371

al., 2024] and FPA [Li et al., 2024a] used Unreal 372

Engine and CARLA, non-differentiable tools that 373

support data capture, diverse scene setups, lighting 374

conditions and self-driving simulations. Two other 375

works produced adversarial textures and meshes us- 376

ing PyTorch 3D and then evaluated their robustness 377

within scenes rendered by non-differentiable Blender 378

3https://www.blenderkit.com/

https://www.blenderkit.com/


and Unity tools [Zeng et al., 2019; Meloni et al.,379

2021]. TT3D [Huang et al., 2024] created attacked380

objects using NeRF and then used Blender and Mesh-381

lab for testing cross-render transferability.382

5.2 Attacks in the Physical Domain383

Implementing real-world adversarial attacks poses384

several challenges, especially when manufacturing385

adversarial meshes and textures. Post-processing and386

mesh stabilization may require advanced techniques387

like Marching Cubes [Tu et al., 2021] to ensure a wa-388

tertight, non-degenerate mesh that can be 3D printed.389

Researchers have also developed flexible “universal”390

attacks that can be 3D printed once and deployed in391

multiple scenarios without retraining [Abdelfattah392

et al., 2021]. When applying adversarial textures,393

high-resolution printing or color constraints (Sec.394

4.2) can enhance feasibility; however, covering large395

surfaces is costly, prompting the use of localized396

sticker-mode” approaches [Li et al., 2024a] that only397

modify a small area (e.g., a vehicle door).398

6 Future Directions399

To further expose DNN vulnerabilities, we propose400

four directions for differentiable rendering research:401

Target Diversity. Many differentiable rendering at-402

tacks focus on targeting cars used for autonomous403

driving. Meanwhile, use of NeRF and 3D Gaus-404

sian Splatting has recently expanded into other real-405

world applications for robotics and unmanned aerial406

systems (UAS) but remains largely unconsidered in407

adversarial ML research. Exploring more diverse408

targets in these applications would expand Task 4.1409

and Task 4.2.410

SOTA Models and Other Modalities. Existing dif-411

ferentiable rendering attacks mainly target image412

classifiers and object detectors, with limited work on413

optical flow, depth estimation, point cloud classifiers,414

and multi-modal or multi-task fusion models [Ab-415

delfattah et al., 2021]. Attacks on 3D scene under-416

standing and advanced tasks like tracking or video417

recognition remain underexplored, despite the grow-418

ing use of robust models in robotics and AR. Future419

research could also include newer architectures such420

as EfficientNet, ViT, and DeiT, which could exhibit421

different vulnerabilities from older models. Exploit-422

ing these emerging vulnerabilities would advance423

attacker goals 2.1–2.5.424

Attacks Considering Real-World Phenomena. 425

Current methods use only basic lighting and cam- 426

era adjustments, such as varying lighting intensity 427

and position or camera resolution. This overlooks 428

complex environmental factors (e.g., variable light 429

shapes, shadows, color) and camera parameters (lens- 430

warping, field of view, focus distance, and exposure) 431

that create new attack surfaces in drones and other 432

camera-equipped systems. Other physical attacks 433

involving placement of lens covers and rolling shut- 434

ter exploitation [Sayles et al., 2021] are also under- 435

studied. Broadening research on such real-world 436

phenomena would strengthen Tasks 4.3, 4.4, and 437

5.2. 438

Tools and Pipelines. While simulators like CARLA 439

are widely used for attack research, differentiable 440

rendering libraries often require specialized knowl- 441

edge and manual scene configuration. Existing GUIs, 442

such as Blender plugins for Mitsuba4, help export 443

scenes but still demand significant expertise in 3D 444

modeling. More user-friendly interfaces and inte- 445

grated pipelines for differentiable renderers would 446

streamline digital attacks (Task 5.1), ultimately facil- 447

itating transfer to physical scenarios (Task 5.2). 448

7 Conclusion 449

Understanding the evolving capabilities of differen- 450

tiable rendering is essential for safeguarding deep 451

neural networks. This survey presents a task-guided 452

review of adversarial attacks using differentiable ren- 453

dering, covering manipulations of 3D objects and 454

scenes that compromise applications like image clas- 455

sification and object detection. By categorizing at- 456

tacker tasks and linking them to goals, we highlight 457

research gaps such as attacks targeting scene pa- 458

rameters (lighting, camera configurations) and the 459

need for user-friendly resources. Future work should 460

explore novel attack methods and practical physical 461

evaluations, facilitating more resilient DNN defenses 462

in this rapidly advancing area. 463
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