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ABSTRACT
Cybersecurity analysts are often presented suspicious machine ac-
tivity that does not conclusively indicate compromise, resulting in
undetected incidents or costly investigations into the most appropriate
remediation actions. There are many reasons for this: deficiencies in
the number and quality of security products that are deployed, poor
configuration of those security products, and incomplete reporting
of product-security telemetry. Managed Security Service Providers
(MSSP’s), which are tasked with detecting security incidents on
behalf of multiple customers, are confronted with these data quality
issues, but also possess a wealth of cross-product security data that
enables innovative solutions. We use MSSP data to develop Virtual
Product, which addresses the aforementioned data challenges by
predicting what security events would have been triggered by a
security product if it had been present. This benefits the analysts
by providing more context into existing security incidents (albeit
probabilistic) and by making questionable security incidents more
conclusive. We achieve up to 99% AUC in predicting the incidents
that some products would have detected had they been present.

CCS CONCEPTS
• Security and privacy → Intrusion/anomaly detection and mal-
ware mitigation; • Information systems → Data mining;
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1 INTRODUCTION
Security products often are primed to detect certain threats extremely
well. In other contexts, they will generally provide less than conclusive
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Product Type Alert Description (Event)

Gateway TCP Urgent Data Enforcement
Gateway TCP anomaly
Gateway TCP Out of Sequence
Gateway ICMP Echo Request
Windows Cryptographic operation
Windows Attempt to unprotect auditable protected data
Windows Logon attempt using explicit credentials
Windows Key file operation
Windows Filter Manager Event 1
Windows Attempt to register a security event source
Windows Attempt to unregister a security event source
Windows Special privileges assigned to new logon
Windows A privileged service was called
Windows A network share object was accessed
Firewall TCP Connection
Firewall UDP Connection
Proxy TCP Cache Hit
Proxy TCP Cache Miss: Non-Cacheable Object

Table 1: A long list of inconclusive alerts generated in a real in-
cident of a machine infected by the infamous Zbot Trojan. These
alerts overwhelm a cybersecurity analyst, and do not help an-
swer important questions such as: Is this machine compromised?
How severe is the attack? What actions should be taken? Our
technique, Virtual Product, correctly predicts the presence of
the infamous Zbot Trojan, which would have been identified by
an AV product, had it been installed.

or no evidence of attacks. This motivates a defense in depth strategy
that advocates for deploying multiple kinds of security devices to
provide the most robust defense. Clearly it is infeasible to deploy
every single security product to maximally protect every single
device in an organization. Cybersecurity analysts, therefore, must
contend with suboptimal context regarding potential attacks because
the products that are providing telemetry are not well suited for a
potential attack. Their confidence in either pursuing or ignoring a
potential compromise is often less than ideal.

The key to improving detection rates in this environment is to
learn from the vast amounts of telemetry produced by the prevalent
defense-in-depth approach to computer security, wherein multiple
security products are deployed alongside each other, producing highly
correlated alert data. By studying this data, we are able to accurately
predict which security alerts a product would have triggered in a
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Figure 1: Virtual Product helps our user Sam discover and un-
derstand cyber-threats, and informs deployment decisions (e.g.,
add firewall?) through semi-supervised non-negative matrix fac-
torization on telemetry data from other users (with firewalls de-
ployed). In the data matrix, each row represents a machine-day,
and each column a security event’s occurrences. Missing events
from undeployed products are shown as gray blocks. The last
column indicates if the firewall has detected an incident. Our vir-
tual firewall serves as a proxy to the actual product and predicts
the output Sam may observe (dark green block) if he deploys it.

particular situation, even though it was not deployed. A representative
example is shown in Table 1, wherein security alerts produced by
several products hint at the possibility of a security problem, but do
not present conclusive evidence. Our models, however, are able to
correctly predict the presence of the Zeus (also known as the Zbot)
trojan, as the cause of the anomalous system and network behavior
on the machine.

We introduce and formulate the novel problem of Virtual Product,
the first known attempt to predict the security events and high-severity
incidents that would have been identified by a product if it had been
deployed. Given sufficient data from many organizations deploying
different sets of security products, we posit it should be possible
to predict the events that would have been reported by additional
security products that were not deployed. This analysis benefits from
the observations that many security products detect the same threats,
and that attacks are typically automated and therefore proceed in
predictable sequences of behavior.

Figure 1 shows how Virtual Product works. We formulate incident
data as a large matrix. Each row, called a machine-day, tracks all of
the security events that were observed on a particular machine, on a
given date. Although many entries will be empty since machines are
at most protected by a handful of products, we can predict the likely
events that would have been triggered by those products that were
not deployed. The security officers can then hopefully make a more
informed decision about the trade off of cost and value of what other

security products would provide. For the analyst, Virtual Product
enriches each incident (i.e., row) with more context to understand
the severity of the threat posed by the observed activity. Our work
makes the following contributions:
• Novel Idea of Virtual Product. We introduce the problem of

simulating a security product’s individual security events and
the security incidents that these events would have raised, had it
actually been deployed. We formulate techniques by which the
security data managed by Security Incident and Event Managers
(SIEM’s) and Managed Security Service Providers (MSSP’s) on
behalf of multiple products can be used for this purpose (see
Table 2 for definitions of these terms).

• Effective Approach. We provide a practical implementation for
this problem by adapting semi-supervised non-negative matrix
factorization techniques, which simultaneously addresses the
problem of security incident and event prediction for the absent
products, with high accuracy.

• Impact to Security Industry. Our Virtual Product model will
impact the security industry by increasing company security at sig-
nificantly reduced costs. We are working towards making Virtual
Product events and security incidents available to customers of an
MSSP. By deploying Virtual Product on behalf of customers, we
provide a new way for them to experience the potential benefits
of security products without deploying them, allowing them to
make more informed purchasing decisions.
To enhance readability of this paper, we have listed the terminology

used in this paper in Table 2. The reader may want to return to this table
throughout this paper for technical terms’ meanings and synonyms
used in various contexts of discussion. We proceed by discussing
related work in Section 2, and present our proposed Virtual Product
model in Section 3. We evaluate the performance of our algorithm in
Section 4. Next, we discuss the expected impact of Virtual Product
and concrete deployment plans studies in Section 5. Finally, we
discuss our findings and conclude in Section 6.

2 RELATED WORK
There has been growing interest in applying machine learning and
data mining techniques to detect cyber-threats, such as malicious
files [2, 23], malicious websites [12, 19], and online fraudulent
behaviour [16], using approaches range from Naive Bayes [20], to
neural networks [3], decision trees [24], to large-scale graph-based
inference [2, 23]. In contrast to prior work, instead of predicting
cyber-threats directly, we formulate and tackle the novel Virtual
Product problem of predicting how a security product would work
in a customer’s specific environment, had it been deployed. Not only
do we predict the incident triggering behaviour of a product, but
also reconstruct all the security events it detects, tackling both tasks
simultaneously using matrix factorization methods. To the best of
our knowledge, Virtual Product addresses a novel problem, one that
provides additional context and detection capabilities by predicting
the incidents and individual security events that would be provided
by security products had they been deployed.

Matrix factorization [10, 14, 22] exploits latent features of a data
matrix by decomposing the matrix into a series of low-rank factor
matrices. These factor matrices, though additional constraints can be
enforced on them, are learned by minimizing a generalized Bregman
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Technical term Meaning

Virtual product A machine learning model used to recon-
struct a real security product’s behavior

Machine-day A machine on a particular day

Security event A description of activity recorded by a secu-
rity product, not necessarily malicious, e.g.,
login failure

Incident A serious security threat, evidenced by one
or more events, warranting attention, e.g.,
unblocked malware

SIEM Security Incident and Event Managers, which
manage security events produced by prod-
ucts, that they analyze to detect and report
security incidents

MSSP Managed Security Service Providers, which
run a SIEM on behalf of multiple customers

Table 2: Terminology used in this paper

divergence [5, 22] between the original data matrix and the dot
product of the low-rank factor matrices. Matrix factorization has
been popularly used in collaborative filtering [13, 18, 21] of highly
sparse user-item rating records to predict users’ preferences and
recommend unrated products. Document clustering is another well-
studied research domain that uses matrix factorization. A common
approach is to apply non-negative matrix factorization (NMF ) [6, 11]
on sparse bag-of-words features of documents and group documents
using the derived non-negative factors [4, 6, 11]. Supervision in the
context of matrix factorization introduces class separating structure
into the factor matrices, which enforces linear separation of classes
in the linear projection of data [13, 17]. The objective function of
the factorization has been designed to enforce specific properties of
the latent projected data. Previous efforts on supervised and weakly
supervised matrix factorization can be found in [1, 9, 13, 25]. Most of
them focus on decomposing densely valued data matrices to improve
clustering accuracy. Our algorithm extends and adapts prior work
to the classification problem of predicting attacks by reconstructing
missing signals on extremely sparse data.

3 PROPOSED MODEL: VIRTUAL PRODUCT
Given a security product P , our Virtual Product model aims to
detect and categorize incidents for customers who have not deployed
P . We formulate the construction of Virtual Product as a classifi-
cation problem, training it on machine-day observations collected
from machines that have deployed P . The training process learns
the functional mapping between the event occurrence patterns of
other products and the incident class labels reported by P . During
testing, the Virtual Product model takes as input the observed event
occurrence patterns from products except P , and produces incident
detection and categorization results.

A main challenge for Virtual Product is in training and applying
it with incomplete event occurrence patterns as input. Events may be

missing either because their corresponding products are not deployed,
or due to data corruption at the telemetry data collection process.

To address this issue, we propose a semi-supervised non-negative
matrix factorization method (SSNMF ) as a core computation tech-
nique for Virtual Product. It extracts an unified discriminative feature
representation of the event occurrence records from both the training
and testing datasets. We conduct incident detection and categoriza-
tion in Virtual Product by feeding the learned feature representations
as input to any standard supervised classifiers. Virtual Product de-
notes the process of conducting SSNMF on event occurrence data,
followed by training a supervised classifier on the output of SSNMF .

Another contribution of Virtual Product is to estimate event
occurrence patterns that are missing from the observed data. It is
helpful for security analysts to understand relations between event
occurrence profiles and reported security incidents. The SSNMF
well matches this requirement, as it is intrinsically equipped with the
capability of reconstructing the missing event values through inner
product of low-rank matrices.

3.1 Semi-Supervised Non-negative Matrix
Factorization (SSNMF)

We use a non-negative data matrix X ∈ RN×M to denote the aggrega-
tion of both training and testing event occurrence data. Each row in
X , noted as Xi, : denotes occurrence counts of different events around
a machine-day. Without loss of generality, the first N1 rows of X
belong to the training event occurrence data. They are equipped with
corresponding incident class labels reported by the target product P .
The remaining N − N1 rows of X are the testing data corresponding
to event occurrence data collected from customers’ machines without
P deployed.

Non-negative Matrix Factorization reconstructs a non-negative
data matrix X ∈ RN×M using the dot product of two non-negative
factors U ∈ RN×k and V ∈ RM×k , where k is the number of latent
features that is often determined by cross-validation. As shown
in Equation (1), the latent factors are learned by minimizing the
reconstruction error on the observed events in our data.

U ,V = argmin
U ,V ⩾0

∥X −UVT ∥o
2 (1)

The norm ∥∥o indicates the aggregated reconstruction error on the
observed entries of X . Each row in U , Ui, : represents the linear
projection of Xi, :, which formulates a new feature representation
of machine-day observations in a low-dimensional space. Column
vectors of V are the projection bases spanning the projection space.

To integrate supervision information into the matrix factorization
process, we introduce a class-sensitive loss into the objective function
of matrix factorization, in order to force machine-day observations
of different classes to be separated from each other in the projected
space. Equation (2) and Equation (3) give the formulation of the
discriminative loss functions defined for binary and multi-class
classification scenarios, respectively.

F (Ŷ ,U ,W ) = −
N∑
i=1

Ŷi log
1

1 + exp (−Ui, :WT )

+ (1 − Ŷi ) log
1

1 + exp (Ui, :WT )

(2)

191



F (Ŷ ,U ,W ) = −
N∑
i=1

C∑
j=1

Ŷi, j log
exp (Ui, :WT

j, :)∑
j′ exp (Ui, :WT

j′, :)
(3)

whereW ∈ R1×k stores the regression coefficients. Ŷi represents
the class label of each machine-day observation. For labeled machine-
days, Ŷi it either 1 or 0, depending on whetherXi, : belongs to positive
or negative class. For unlabeled machine-days, Ŷi represents any
plug-in estimator of probabilistic confidence of Xi, : belonging to
positive class. In the multi-class version of the loss function, C
denotes the number of classes in the labeled dataset. As a result,W
becomes aRC×k matrix. Each row inW corresponds to the regression
coefficients for each class. Ŷi, j of labeled data is defined following
one-hot encoding scheme. For unlabeled data, Ŷi, j represents the
probabilistic class membership of each Xi, :.U is the common factor
shared by both matrix factorization in Equation (1) and the class-
sensitive loss function defined in Equation (2) and (3). This design
guarantees the feature representationU preserves the class separating
structure of the training data.

Ŷ for unlabeled data can be initialized using external oracles
with probabilistic output, such as gradient boosting and logistic
regression. In this work, we treat Ŷ as one variable to learn and
estimate it by jointly optimizing the objective function with respect
toU ,V ,W and Ŷ . We assume that unlabeled data points with similar
profiles are likely to share similar soft class label Ŷ . By enforcing
such assumption to the objective function design, we explicitly
inject supervised information into the projection of both labeled and
unlabeled machine-day observations. The complete optimization
problem of SSNMF is shown in the following equation.

U ,V ,W , Ŷ = argmin
U ,V ≥0,W ,1≥Ŷ ≥0

∥X −UVT ∥o
2
+ αF (Ŷ ,U ,W )

+ βTr (ŶT LŶ ) + γ (∥U ∥2 + ∥V ∥2) + ρ∥W ∥2

s .t .Ŷi = Yi if Xi, : is labeled

(4)

The constraint in the objective function requires strict consistency
between Ŷ and the true class labels on labeled machine-day obser-
vations. L is the graph laplacian matrix defined based on K-nearest
neighbor graph of the whole data matrix X . Minimizing the trace
function Tr (ŶT LŶ ) propagates the confidence of class membership
from true class label of labeled machine-days to unlabeled machine-
days. It embeds class-separating information into the projectionU of
unlabeled machine-days. Regularization terms γ (∥U ∥2 + ∥V ∥2) and
ρ∥W ∥2 are added to prevent over-fitting.

3.2 Optimization Algorithm
We use coordinate descent to optimize Equation 4. During each
iteration,U , V ,W and Ŷ are updated alternatively. One of the four
variables are updated while all the others are fixed. Iterations continue
until the objective value cannot be further improved.U ,V are updated
using multiplicative update [11], which is a popular optimization
technique for solving many variants of NMF . Equation (5) gives the
formulations of multiplicative update of U and V

U t+1 = U t ⊙ [(X ⊙ M )V ]+ + [(UV T ⊙ M )V ]− + α [ŶW ]+ + α [RW ]−

[(X ⊙ M )V ]− + [(UV T ⊙ M )V ]+ + α [ŶW ]− + α [RW ]+ + γU

V t+1 = V t ⊙ (X ⊙ M )TU
(UVT ⊙ M )TU + γV

(5)

where [A]+ = (|A| + A)/2 and [A]− = (|A| − A)/2. R is the
output from the sigmoid function (binary classification) Ri =

1
1+exp (−Ui, :W T ) or the softmax function (multi-class classification)

Ri, j =
exp (Ui, :W T

j, :)∑C
j′=1 exp (Ui, :W

T
j′, :)

. The operation ⊙ indicates hadamard prod-

uct between matrices. M is a entry-wise weight matrix. Mi, j = 1 if
the entry Xi, j is observed, and Mi, j = 0 otherwise.

Updating Ŷ consists of two components. For one aspect, the
learning of Ŷ is based on supervision information propagation. For
the other aspect, estimates of Ŷ depends on the output from the
sigmoid or softmax function, which encodes the retraction from
data reconstruction penalty in the objective function. Equation (6)
and Equation (7) define how to estimate Ŷ in binary and multi-class
classification scenarios:

Ŷi = Yi if Xi, : is labeled

Ŷ t+1 = Ŷ t ⊙ α log (1 + exp (UWT )) + 2βSŶ
α log (1 + exp (−UWT )) + 2βDŶ

(6)

Ŷi = Yi if Xi, : is labeled

Ŷ t+1 = Ŷ t ⊙ α log R̂ + 2βSŶ
2βDŶ

(7)

where R̂i, j =
exp (Ui, :W T

j, :)∑C
j′=1 exp (Ui, :W

T
j′, :)

. S is weight matrix of K-nearest

neighbor graph. D is a diagonal matrix with Di,i defined as
∑N
i=1 Si, j .

By removing terms withoutW in Equation (4), the left terms of
the objective function formulate a L2-penalised logistic regression
with soft class labels Ŷ and training data points in the projected space
U . Therefore, learning W given U and Ŷ fixed can be performed
through iterative gradient descent until convergence. We found that
the number of iterations can be dramatically reduced by choosing
the step size of gradient in an adaptive way using AdaGrad [8], as
shown below:

W t+1 =W t + λ
GW t√∑t−1
t ′=1

G
W t ′

(8)

where GW is the gradient of Equation (4) with respect toW .
When U , V and W converge, U1:N1, : and UN1:N , : are used as

low-dimensional feature representations of the training and testing
data, respectively. We then train a logistic regression on the row
vector space ofU to conduct incident detection and categorization in
Virtual Product. Note that we are not restricted to logistic regression.
We choose it due to its simplicity and probabilistic decision output.
Despite its simplicity, it shows superior performance thanks to the
learned feature representation U , as reported in the experimental
study.
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Dataset #Machine-days #Detected Incidents #Events Sparsity level #Incident Type

FW1: Firewall 1 4506 770 1011 98% 10
FW2: Firewall 2 9254 3093 1927 99% 12
FW3: Firewall 3 4477 1274 2019 98% 10
EP1: Endpoint Protection 1 18983 4128 2409 99% 30
EP2: Endpoint Protection 2 8006 904 988 97% 5

Table 3: Summary of the training datasets (Jul-Sept) for the top five products that detect the most incidents.

4 EVALUATION
4.1 Data Collection
Our evaluation uses telemetry data sent from a leading Managed
Security Service Provider (MSSP), which supports roughly 80 secu-
rity products from different vendors. Customers send telemetry from
their deployed products to the MSSP, which analyzes the telemetry to
identify and report incidents. Due to space constraints, we show the
results of the top five products that detect the most incidents: three
firewalls (FW1, FW2, FW3) and two endpoint protection products
(EP1, EP2).

To evaluate our approach’s prediction performance for a specific
product P , we derived an anonymized dataset from the telemetry data.
This derived dataset consists of data contributed by the machines
that have deployed P , which allows us to extract ground truth labels.
When performing prediction, we do not use any events from P . In
other words, we pretend that product P is not deployed and hide all
its events.

The dataset is represented as a N -by-M matrix X (see Figure 1).
Each row Xi, : is an instance that represents a machine-day. Each
columnX:, j is a feature that corresponds to the number of occurrences
of a event from different products except P . To prevent numerical
overflow during computation, we take the logarithm of each event
occurrence count in X . Since events relevant to an incident may not
appear within a single machine-day, when counting occurrences,
we consider the period that spans three days before and after the
machine-day. Note that our task is not to predict an incident before it
happens, so we also collect events observed after the machine-day.
To prevent duplicate and similar instances, we only use machine-days
from the same machine that are at least one week apart from other
machine-days.

The matrix is extremely sparse, and each machine-day typically
only has a few observed events. Events may be missing if their corre-
sponding products are not deployed. They may also be caused by data
corruption when the products report them. To avoid machine-days
with zero or very few observed events, which are nearly impossible
to perform prediction, we filter out all machine-days with fewer than
20 observed events.

There are two sets of labels associated with each machine-day, one
for binary classification of whether there is an incident, and the other
one for multi-class classification of the incident type. The positive
and negative machine-days are collected as follows. For each incident
reported in our system, we label a machine-day as positive if an
incident is detected by product P . For negative machine-days, we use
the same set of machines (as when collecting positive instances). A
machine-day is labeled negative if no incidents have been detected

Dataset #Machine-days #Detected
Incidents

Sparsity
level

FW1 3090 355 98%
FW2 6515 2830 98%
FW3 2660 253 97%
EP1 8222 2377 98%
EP2 2275 754 98%

Table 4: Summary of validation datasets (Oct-Dec).

by any products within a one-month period (15 days before to 15 days
after). This binary label definition is used in experiments, in order to
evaluate the capability of the proposed method for detecting malicious
incidents. We also include a multi-class definition of incident labels.
The multi-class incident label denotes multiple categories of detected
incidents, valued as {−1, 1, 2, ...C}, where C is the number of incident
categories, and −1 means “no incident”.

The same data collection process is performed over two inde-
pendent time periods. The first dataset was collected from July to
September in 2016 — we call this the training dataset (summa-
rized in Table 3), on which we conduct cross-validation to verify
theoretical validity of the algorithmic design in Section 4.4 and
evaluate reconstruction performances in Section 4.3. The second
dataset was collected from October to December in 2016 — we
call this the validation dataset (summarized in Table 4). We use the
training dataset to tune the parameters of our model, then apply it on
the validation dataset to evaluate incident classification accuracy in
real-world applications

In Table 3, we also show the sparsity level of each product’s
dataset, to highlight how sparse the data matrices are in our study.
The sparsity level of a given data matrix is defined as the fraction of
unobserved entries in the matrix.

4.2 Experiment Setup and Overview
Our experiment consists of three parts.

(1) In Section 4.3, benefiting from matrix factorization, the pro-
posed method estimates count values of security events pro-
duced by those products whose events were withheld from
the dataset. The reconstructed event counts will later help us
determine whether a security incident would have been raised
by the events produced by the withheld product. Since secu-
rity incident are formulated as collections of relevant events,
reconstructing the missing events is essential for incident repro-
duction based on the occurrence pattern of the corresponding
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incident. Furthermore, the individual events provide important
insights and context into the nature of the security incident,
which frequently enable improved triage and remediation of
the incident. We evaluate our proposed event-reconstruction
model by measuring reconstruction error between ground truth
event counts and our estimated values.

(2) In Section 4.4, we evaluate the performance of our proposed
method for detecting security incidents. This output of Virtual
Product’s methods allows us to build a incident detector based
on incomplete event information. The test is conducted on the
training data matrices and the incident labels of all five products.
Both binary and multi-class incident labels are produced for
this test.

(3) In Section 4.5, we investigate the computational complexity and
empirical scalability of our proposed Virtual Product model,
noted as VP.

4.3 Evaluation on Reconstruction Accuracy
We validate in this section that the proposed model can compensate
for missing events. We investigate the reconstruction performance of
Virtual Product with respect to the occurrence counts of withheld
event observations. Reconstruction capability is a key function of
the proposed model, since knowing which events were responsible
for triggering a predicted security incidents is essential to the under-
standing of that incident, and to its remediation. Accordingly, we
evaluate the reconstruction capability of the proposed method. We
randomly select 50% of the observed entries and take the event count
of these entries as ground truth. After that, we hold out the ground
truth counts and apply our matrix factorization method to derive
the estimated count values of the masked entries. To measure recon-
struction accuracy we use the R-squared score between the ground
truth and the estimated values. To remove randomness introduced by
sampling, we repeatedly sample the observe entries 10 times. The
average and standard deviation of the derived R-squared scores from
different sampling rounds are used as a comprehensive evaluation
metric of the reconstruction performance.

The average and standard deviation of R-squared scores derived
on the five datasets are shown in Table 5. We also provide a statistical
summary of our reconstruction results in Table 5. In addition, for
each dataset, we count the percentage of the entries in which the
reconstructed event occurrence counts are larger than 50% of the
corresponding ground truth occurrence count values, as noted as
Percentaдe in Table 5. This statistical summary provides an intuitive
understanding on the reported reconstruction accuracy. In practice,
if the reconstructed occurrence count of a given event is close
enough to its ground truth, the reconstruction is precise enough
to estimate whether this event was triggered by the corresponding
product. The results show that Virtual Product is able to reconstruct
event occurrence patterns with precision for the security products.
As seen in the results, almost all masked event occurrence patterns
are perfectly recovered through the matrix factorization process
embedded using our proposed method. As we will see in Section 4.6,
these recovered security events enable machine learning models to
perform improved incident detection. The true value of this work,
however, is perhaps best illustrated by the case studies shown in
Section 5.1.

R-squared Score Percentage
Dataset Mean Std Mean Std

FW1 0.8493 0.0036 0.9819 0.0009
FW2 0.7300 0.0032 0.9834 0.0002
FW3 0.8408 0.0023 0.9858 0.0007
EP1 0.7356 0.0013 0.9801 0.0001
EP2 0.8193 0.0014 0.9832 0.0004

Table 5: Performance of reconstruction on all five datasets

4.4 Evaluation: Incident Detection and
Categorization

We perform 10-fold Monte Carlo cross-validation, where each ran-
domly samples 70% of the machine-days from the training dataset
collected from July to September in 2016. The remaining 30% is left
for testing.

We set up a baseline model (shorthand: LR) by training a logistic
regression classifier directly on the event count matrix X , with
missing entries filled with zeros. In our approach (shorthand: VP),
we train a logistic regression classifier on the low-dimensional feature
representation of X produced by Virtual Product model.

The purpose of introducing the baseline model is two-folds. Firstly,
we use the results from the baseline model to further validate our
initial assumption: it is possible to predict the events that would
have been reported by additional security products that were not
deployed. The baseline model conducts classification using only
the observed events from the deployed products. No reconstructed
event information is embedded. Therefore, if the baseline method
can detect or categorize incidents with an acceptable accuracy, we
have strong reason to believe the proposed Virtual Product model
can perform even better by incorporating the reconstructed event
counts into the classifier design. Secondly, we aim to conduct a
fair comparative study for our proposed methodology, though we
note that the baseline model is not a comparison to prior art, as
Virtual Product addresses a novel problem of not only predicting
the incidents but also recovering the associated security events.
The objective function of SSNMF , used in Virtual Product, can be
roughly understood as construction of a logistic regression classifier
on the projected space of the original data. This comparative study
aims to verify the benefits gained from the algorithmic design of
Virtual Product for classification with missing features.

To allow fine-grained comparison, we compute the mean and
standard deviation of the Area-Under-Curve (AUC) and the True
Positive Rate (TPR) across 10 folds, and display them in Table 6
and Table 7, respectively. As we can see in the two tables, both the
baseline and the proposed Virtual Product method present good
classification performances over training datasets of all five security
products. It indicates that counts of events collected from different
organizations are able to predict occurrence of incidents that would
have been reported by undeployed products. Furthermore, the result
unveils consistently superior incident detection precision of the
proposed Virtual Product model over the baseline method across the
training datasets of different products. Figure 2 shows the average
ROC curve and AUC derived from the cross-validation test, offering
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Figure 2: Averaged ROC curves from 10-fold cross-validation of Virtual Product on our top five product datasets.
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Figure 3: ROC curves of the Virtual Product model evaluated using the validation datasets of the five products.

VP AUC LR AUC
Dataset Mean Std Mean Std

FW1 0.9831 0.0041 0.9695 0.0055
FW2 0.9900 0.0018 0.9810 0.0029
FW3 0.9200 0.0070 0.8761 0.0131
EP1 0.8218 0.0066 0.8076 0.0072
EP2 0.8962 0.0083 0.8306 0.0164

Table 6: Our approach (VP) detects security incidents with high
accuracies (AUCs) across all five datasets, outperforming the
baseline model (LR).

VP TPR LR TPR
Dataset Mean Std Mean Std

FW1 0.9724 0.0114 0.9661 0.0078
FW2 0.9820 0.0057 0.9810 0.0074
FW3 0.7879 0.0157 0.7608 0.0228
EP1 0.5200 0.0175 0.5016 0.0268
EP2 0.5897 0.0293 0.5663 0.0399

Table 7: True positive rate (TPR) of incident detection on all five
data sets at 10% false positive rate (FPR). Our approach (VP)
outperforms the baseline (LR)

a global and intuitive view of incident detection performances
over training datasets of different products using the proposed
Virtual Product model. All obtained results support the design of the
proposed Virtual Product method. Embedding matrix completion

VP LR

FW1 0.9927 0.9910
FW2 0.9425 0.9338
FW3 0.8005 0.8043
EP1 0.7501 0.7220

Table 8: Average F1 scores of incident categorization on our
datasets. We do not include EP2 because over 99% of the de-
tected incidents belong to one single incident type.

into classification helps extract correlation among observed events
of different products, which increases available information to boost
classification precision.

Additionally, test on the validation datasets follows a standard
training-testing process of machine learning models in real-world
applications. Classification model built with the training dataset
collected within the precedent time period is used to detect incidents
on the validation dataset formulated within the current time slot.

Interestingly, as shown in Figure 3, incident detection result
using the proposed Virtual Product model presents consistent high
detection accuracy over validation datasets of different products. The
reported detection accuracy confirms the robustness of the proposed
Virtual Product model.

As described in Section 3, the proposed Virtual Product can be
seamlessly extended for incident categorization, which classifies
detected incident at a finer scale. Without major modification, the
proposed Virtual Product is able to achieve both incident detection
and categorization (multi-class classification) at the same time.
Table 8 shows the average F1-score of incident categorization on
training datasets of different products using Virtual Product. As
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we can see, Virtual Product can achieve almost perfect incident
categorization on the FW1 and FW2 datasets. In the EP2 dataset,
over 99% of detected incidents belong to a single incident type.
Severe class imbalance makes any classifier built on the dataset
statistically unstable, so we chose not to include the EP2 dataset in
the experimental study of incident categorization. The categorization
precisions on EP1 and FW3 are relatively lower. This is mainly
due to class imbalance among different incident categories in these
two datasets, particularly in the case of the EP1 training dataset,
for which nearly half of the 30 incident types are minority classes.
Each of these minority classes contains fewer than 10 machine-day
observations, which increases the difficulty of categorization. The
impact of class imbalance is also confirmed by the baseline LR
method. Nevertheless, even in this extreme situation, the proposed
Virtual Product still obtains improvements compared to the baseline
model.

In general, all experimental results in this section verify the
effectiveness of Virtual Product. By jointly conducting matrix fac-
torization and discriminative model learning, the proposed model
makes full use of inter-event correlation to compensate information
missing due to the extremely sparse data structure. As a result, it
provides a good reconstruction of the classification boundary from
highly incomplete event occurrence data.

4.5 Evaluation of Computational Cost
Time Complexity Analysis. The training of Virtual Product’s model
consists of two parts. First, we construct a k-nearest neighbor (K-NN)
graph in an offline manner. Nearest neighbor searching generally
requires a cost ofO(N 2M), which is quadratic to the size of the dataset.
Since the machine-day event count data is high-dimensional and
highly sparse, we use an approximate K-NN method [7] tailored for
sparse data. This reduces the cost of K-NN searching toO(DNloдN )
in the worst case, where D is the number of feature dimensions. Next,
we perform multiplicative updates in O(TNMk) +O(TNCk) time,
where T is the number of iterations and k is the dimension of the
projected representationU . The total cost of the proposed model is
therefore at most O(DNloдN ) +O(TNMk) +O(TNCk). For all five
datasets, we observed that 200 iterations (T = 200) were sufficient to
achieve convergence.

Empirical Scalability. We conducted experiments to study how
our proposed model scales with increasing volumes of data. We
report the average training runtime of the proposed Virtual Product
model on EP1 and FW2 (across 10 runs). Our machine is a 64-
bit Linux laptop (Ubuntu 14.0) with an Intel Core i7 quad-core
CPU running at 2.5GHz, 16GB RAM and 500GB disk. The Virtual
Product model is implemented in Python 2.7, with API provided in
python scientific computing packages, numpy 1.13 and scikit-learn
0.18.1. EP1 and FW2 datasets contain approximately 19k and 9k
machine-days, representing real-world medium-scale applications.
To study large-scale scenarios, we enlarge EP1 and FW2 datasets by
10 folds by replicating real machine-days contained in the original
datasets. The enlarged EP1 and FW2 datasets (we call them Large
EP1 and Large FW2) contain 190k and 90k machine-days respectively.
Table 9 shows the average runtimes of our proposed model across
the datasets.

Dataset #Machine-days Runtime (minutes)

FW2 9,254 10
EP1 18,983 25
Large FW2 92,540 45
Large EP1 189,830 57

Table 9: Average virtual product training times (over 10 runs).

Our MSS service currently monitors about 80 products. Since
each virtual product can be trained independently from each other, we
can easily speed up overall computation through parallelization (e.g.,
distributed computation using Spark; more discussion in Section
5.2). For the evaluation in this section, we were able to train Virtual
Product in under an hour, even on a commodity computer of modest
power with an unoptimized software implementation.

4.6 Improvement in Analyst Response Predictions
As additional evidence to support the utility of Virtual Product, we
measure event reconstruction’s ability to improve the accuracy of a
model that the internal Managed Security Services analysts use in
determining whether to publish incidents to customers or suppress
them as false positives. We use a recent version of this model that is
trained with no interaction or influence from Virtual Product, and
whose primary task is to recommend whether incidents should be
published to customers, or suppressed.

We took the FW1 dataset and removed all events from FW1, while
keeping the events of other devices. We call this dataset Xnone .
We take Xnone and create a new dataset Xtop2 from it, for which
we include the top two predicted events for FW1. We choose the
two events with the highest predicted instance count, normalized
by the average instance count for that event. Although we could
expand the number of predicted events beyond two, we believe
that the simplicity afforded by this heuristic will include the most
salient missing context versus the complexity of determining which
predicted events to include.

Our model achieved 94.7% accuracy on Xnone and 97.6% on
Xtop2. The 2.9% improvement in accuracy results in halving the
error rate. Although the accuracy on Xnone is quite good already,
we must consider that the model is used to increase the productivity
of security analysts. The median salary for an analyst is $90.1K US
dollars [15] and therefore making them individually more efficient is
desirable.

5 IMPACT AND DEPLOYMENT
This section will illustrate how Virtual Product empowers MSSP
customers to identify security incidents by adding additional context
to make more confident incident response decisions. To provide
concrete illustrations of this, we present two case studies and discuss
other areas of expected impact. We then proceed to a discussion of
our current efforts, and future plans to integrate Virtual Product into
the infrastructure used by our Managed Security Services.
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Product Event Description

Seen Indicators (security events)
Proxy Suspicious connection
FirewallA WebVPN Authentication Rejected
FirewallA WebVPN session created
FirewallA WebVPN session terminated
FirewallA WebVPN session deleted
FirewallA WebVPN session started
FirewallA WebVPN Authentication success
FirewallA SSL handshake completed
FirewallA Teardown TCP connection
FirewallA TCP connection
FirewallA Session disconnected
IPS SQL Query in HTTP Request
IPS RookIE/1.0 malicious user-agent string
IPS Angler exploit kit exploit download attempt
IPS Known malicious user agent - mozilla
IPS HiKit initial HTTP beacon
IPS TeamViewer remote administration tool outbound

connection attempt
Router Flow session close

Top Predicted Primary Indicators
FirewallB Windows Executable
FirewallB Malicious File
FirewallB SQL Injection Attempt
FirewallB Phishing Webpage
FirewallB RIG Exploit Kit
FirewallB Windows DLL
FirewallB Heartbleed Malformed OpenSSL Heartbeat
FirewallB Microsoft Indexing Service UTF-7 Cross-Site Script-

ing Vulnerability
FirewallB Microsoft IIS HTR Request Parsing Buffer Overflow

Vulnerability
FirewallB /etc/passwd Access Attempt

Table 10: Virtual Product correctly predicts that FirewallB
would have detected an incident, and 10 of its top 11 predicted
alerts coincide with the one that actually occurred, yielding a
clearer picture of the artifacts involved in the attack and the vul-
nerabilities used. The incorrect prediction is shown in strikeout
font.

5.1 Case Studies and Impact
As in Table 1, in this section we present two additional real-world
incidents and the event predictions identified by Virtual Product for
these incidents as examples of its positive impact on the incident
response process.

Example 1. One of our customers, whom we will call Alice, has an
important server that is protected by many network security products,
as shown in Table 10. What value is FirewallB providing? Let us
imagine that FirewallB is not deployed. Alice observes several suspi-
cious events output from the deployed products. FirewallA detects an
HTTP beacon from the HiKit exploit kit and the proxy also detects
visits to suspicious websites. No incident was generated by these

Product Event Description

Seen Indicators (security events)
Firewall Bad TCP Header length
Firewall P2P Outbound GNUTella client request
Firewall wu-ftp bad file completion attempt
Firewall DNS zone transfer via TCP detected
Firewall SNMP possible reconnaissance, private access udp
Firewall ICMP PATH MTU denial of service attempt
Firewall FTP format string attempt
Firewall SMTP expn root
Firewall SMTP vrfy root
Firewall Server netcat (nc.exe) attempt
Firewall philboard_admin.asp auth bypass attempt
Firewall SSLv2 Challenge Length overflow attempt
Firewall OpenSSL KEY_ARG buffer overflow attempt
Firewall proxystylesheet arbitrary arbitrary command attempt
Firewall Oracle ONE JSP src-code disclosure attempt
Firewall JBoss admin-console access
Firewall RevSlider information disclosure attempt
Firewall Accellion FTA arbitrary file read attempt
Firewall Apache Tomcat directory traversal attempt
Firewall Apache non-SSL conn. to SSL port DoS attempt
Firewall Windows NAT helper components tcp DoS attempt
Firewall Multiple SQL injection attempts
Firewall Bash CGI environment variable inject attempt
Firewall Suspicious .tk dns query
Firewall Suspicious .pw dns query
Firewall ColdFusion admin interface access attempt
Firewall Windows Terminal server RDP attempt
Firewall Suspicious DNS request for 360safe.com
Gateway Connectra Request Accepted
Gateway ICMP: Timestamp Request
Gateway Possible IP spoof
Router Admin Authentication Failed

Top Predicted Primary Indicators
AV CVE-2012-4933 ZENWorks Asset Mgmt Exploit
AV Post-Compromise PHP Shell Command Execution
AV CVE-2015-1635 OS attack, HTTP.sys Remote Code

Execution Exploit
Table 11: An attack on a webserver is obviously underway, but
was it successful? Virtual Product correctly predicts, with 99.9%
confidence, that not only a deployed AV product would detect
attacks on the machine, but predict successful infection of the
system.

security products, indicating that without the evidence from Fire-
wallB, the remaining events are insufficiently threatening to warrant
attention. Based on evidence from the “virtual” FirewallB, however,
Alice finds that there is likely an incident, with 95% confidence.

To further understand the cause of the potential incident, Alice
takes a deeper look at FirewallB’s predicted events, which include
malicious Windows executables, SQL injection attempts, a visit to a
phishing webpage, and attacks on several recognized vulnerabilities.
This additional telemetry gives Alice clarity on the used avenues of
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Product Event Description

Seen Indicators (security events)
Firewall Microsoft Windows 98 User-Agent string
Firewall SMTP: Attempted response buffer overflow
Windows Encrypted data recovery policy was changed.
Windows A cryptographic self test was performed.
Windows Cryptographic operation.
Windows MSI Installer
Windows Key file operation.
Windows A logon was attempted using explicit credentials.
Windows An attempt was made to reset an account’s password.
Windows Special privileges assigned to new logon.
Windows System audit policy was changed.
Windows A user account was changed.
Windows A security-enabled local group was changed.
Windows An account failed to logon
Proxy TCP Cache Miss: Non-Cacheable Object
Gateway Connectra Request Accepted

Top Predicted Primary Indicators
AV Bloodhound.Exploit.170

Table 12: There are indications of possible ransomware activity,
but how did the attack appear on the machine in the first place?
Virtual Product correctly indicates that a malicious spreadsheet
(detected as Bloodhound.Exploit.170) was at fault, a method by
which the Locky RansomWare has been known to propagate.

attack, which she can use to prioritize patching updates to prevent a
recurrence of the attack. It also suggests possible data leaks through
SQL injection and visits to phishing websites, enabling Alice to take
action that could prevent a serious data breach.

For this particular incident, 11 events were triggered by the ac-
tual FirewallB product, and we list the top 11 reconstructed events
identified by Virtual Product. These predictions are prioritized by
dividing the events’ reconstructed instance count by the average
instance count for that event, which is akin to TF-IDF normalization
in statistical language model. In actual deployment, Virtual Product
users can customize its confidence thresholds based on whether they
wish Virtual Product to provide only highly confident event recon-
structions or a broader list that is more likely to include erroneous
predictions, but that may include valuable information that would
otherwise have been suppressed.

Example 2. In some cases, while existing security events may
make it quite obvious that an attack has taken place, they may leave a
vital question unanswered, Was the attack successful?. This is a vital
question, since most webservers are constantly exposed to attacks,
and yet most attacks do not succeed in compromising the machine,
both because the machine is often not vulnerable to the attempted
attack, and because the network devices that report attack events
are often able to block them. Table 11 illustrates such an example,
in which Virtual Product is able to determine that an AV product
would have detected a serious incident with 99.9% probability. The
reconstructed AV events further indicate that the attack is very likely
to have been successful, and they give further insight into the nature
of the predicted attack.

Example 3. Virtual Product is often able to provide context that
outlines appropriate remediative and preventative actions. In the
product events seen in Table 12, an observant analyst may see hints
of a possible Ransomware attack, but the initial method of attack
is not clear. Virtual Product correctly indicates that a malicious
spreadsheet was at fault, a method by which the Locky Ransomware
has been known to propagate, and therefore, reveals a possible social
engineering campaign that the company’s security department should
investigate.

As is evident in these three case studies, and in the case study
shown in Table 1, Virtual Product helps security analyst by providing
context that helps them answer vital questions, such as: Is this
machine compromised or just displaying unusual behavior? Was the
attack that I see on this machine successful? How should I go about
cleaning up this infected machine? How can I prevent a recurrence
of a similar attack on this or other machines in my environment?
By answering these questions for MSSP customers, Virtual Product
significantly facilitates the security analyst’s core tasks.

5.2 Deployment
We are currently working towards delivering an initial version of
this technology to our Managed Security Services Product (MSSP),
which will run on the Amazon Web Services platform. At present,
we process data in batches, because telemetry data is uploaded every
15 minutes from our Security Operations Centers.

To integrate virtual product into the existing customer interface,
we both introduce entirely new security incidents that are identified
on the basis of Virtual Product’s missing signal detection, and enrich
existing incidents with additional context from virtual products. Our
current system is a hybrid of components that are coupled with
services that publish and subscribe to various streaming pipelines.
Because of the flexibility that will be afforded by cloud platforms, we
will schedule and provision resources to perform matrix completion
and will leverage the existing pipelines for incident generation and
enrichment. The interactions that customers and MSS analysts have
with Virtual Product will be fully captured, as at present, allowing
us to tune the parameters of our algorithm.

6 CONCLUSIONS AND DISCUSSION
We have presented Virtual Product, a novel technology that allows
us to predict events from devices that are not currently deployed.
Our evaluation shows that Virtual Product can significantly improve
our ability to detect incidents. The business value of Virtual Product
affects multiple levels of the enterprise. Cybersecurity analysts can
leverage Virtual Product to enrich events coming from machines
to make a better determination if and what kind of attack is being
conducted. For security officers, Virtual Product empowers these
decision makers to make informed purchasing decisions based on
the additive value of potential products. If this technology is broadly
adopted, it could create pressure on security product vendors to focus
more on differentiation through actual capability and not through
naming conventions. Future applications of this technology include
providing product recommendations to our customers, particularly
if we can perform “attack forecasting” to identify the likely attacks
a customer would experience and how well they are defended and
detected by existing products.
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