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Abstract
Visualization is a powerful paradigm for exploratory data anal-
ysis. Visualizing large graphs, however, often results in excessive
edges crossings and overlapping nodes. We propose a new scal-
able approach called FACETS that helps users adaptively explore
large million-node graphs from a local perspective, guiding them
to focus on nodes and neighborhoods that are most subjectively
interesting to users. We contribute novel ideas to measure this in-
terestingness in terms of how surprising a neighborhood is given
the background distribution, as well as how well it matches what
the user has chosen to explore. FACETS uses Jensen-Shannon
divergence over information-theoretically optimized histograms
to calculate the subjective user interest and surprise scores. Par-
ticipants in a user study found FACETS easy to use, easy to learn,
and exciting to use. Empirical runtime analyses demonstrated
FACETS’s practical scalability on large real-world graphs with
up to 5 million edges, returning results in fewer than 1.5 seconds.

1 Introduction
Large graphs are ubiquitous. They are natural representations
for many domains, and hence we find graph structured data
everywhere. As data collection becomes increasingly simple,
and many domains remain complex, real-world graphs are
rapidly increasing in size and data richness. These graphs may
have over millions and billions of nodes and edges and also have
thousands or more of attributes. It is fair to say that many graphs
are in fact too big; exploring such large graphs, where the goal
of the user is to gain understanding, is a highly non-trivial task.

Visualization is perhaps the most natural approach to
exploratory data analysis. Under the right visualization, finding
patterns, deciding what is interesting, what is not, and what to
investigate next becomes easy tasks — in a sense the answers
“jump to us” as our brains are highly specialized for analyzing
complex visual data. It is therefore no surprise that visualization
has proven to be successful in many domains [17, 25, 26].

Visualizing large graphs in an intuitive and informative
manner has proven to be difficult [32]. Even with advanced
layout techniques (e.g., those covered in [15, 9]), plotting a graph
can create a hard-to-read cluster of overlapping nodes and edges,
from which little can be deduced [17, 18]. This is the case even

Figure 1: (a) The Rotten Tomatoes movie similarity graph shown
using conventional spring layout (an edge connects two movie
nodes if some users voted them as similar). Even for this rela-
tively small graph of 17k nodes and 72k edges, this global visu-
alization does not provide much insight. (b) A better way, using
our FACETS approach, focuses on movies that are the most sub-
jectively interesting, surprising, or both. In this example, FACETS
suggests Pretty Woman (romantic-comedy) as an interesting, sur-
prising related movie of Miss Congeniality (crime-comedy).

for graphs with only thousands of nodes (see Figure 1(a) for an
example). Instead of plotting the whole graph (a), visualizing
only part of the graph (b) seems more promising [30, 5, 16, 24].
However, as many real world graphs are scale-free (follow a
power law degree distribution [10]), selecting relevant subgraphs
to visualize can be challenging [5]. Moreover, because of
high-degree nodes, even a single-hop neighborhood expansion
from a node can be visually overwhelming.

We take a different approach. We propose to adaptively
explore large graphs from a local perspective. That is, starting
from an initially selected node — e.g., explicitly queried
by a user, or proposed by an outlier detection algorithm [2]
— we only show the most interesting neighbors as the user
explores the graph from node to node. We identify these nodes
by their subjective interestingness based on how surprising
their and their neighbors’ data distributions are (e.g., do these
neighbors’ degree distributions follow a power law distribution
like when considering all nodes?), as well as by how similar
those distributions are compared to those of the nodes the user
has explored so far. By only showing the parts of the graph that
would be more interesting to the user, the visualization does not



get too complex. By being adaptive, it allows users to explore
facets of the graph that are more subjectively interesting to them.

We call our adaptive approach FACETS — our idea is a
significant addition to existing works that aim to recommend in-
dividual nodes to users (e.g., with centrality measures [1, 5, 30]);
instead, we steer users towards local regions of the graphs that
match best with their current browsing interests, helping them bet-
ter understand and visualize the graphs at the same time. FACETS
ranks nodes based on how interesting and unexpected their
neighborhoods are. Many fascinating works point to the great
potential in leveraging surprise and interest for graph analysis,
such as for anomaly detection [2] and recommendation [22]. To
the best of our knowledge, our work is the very first that adopts
these notions to help user explore and visualize large graphs.

1.1 Illustrative Scenario To illustrate how FACETS works in
practice, consider our user Susan who is looking for interesting
movies to watch (see Figure 1), by exploring a Rotten Tomatoes
movie similarity graph with 17k movies. In this graph, an edge
connects two movie nodes if users of Rotten Tomatoes voted
them as similar films. Susan has watched Miss Congeniality (a
popular movie on Netflix), a crime-comedy that stars Sandra
Bullock as an FBI agent who thwarts terrorist efforts by going
undercover, turning her rude unflattering self into a glamorous
beauty queen (see Figure 1b). FACETS simultaneously suggests
a few movies that are interesting and surprising to Susan.

Matching Susan’s interest, FACETS suggests the Big
Mommas House series, which also has undercover plots and is
interestingly like Miss Congeniality. They both share low critics
scores, but high audience scores (i.e., most critics do not like
them, but people love them). To Susan’s surprise, FACETS also
suggests Pretty Woman, which is quite different (thus surprising)
— a romantic-comedy that has both scores from the critics and
the audience. But, there is still more subtle similarity (thus still
drawing Susan’s interest); both films share a Cinderalla-like
storyline, which explains why the two movies are connected in
the graph: Sandra Bullock goes from a rude agent to a beauty
queen; in Pretty Woman, Julia Roberts goes from a prostitute
to a fair lady. In fact, Pretty Woman is a classic, exemplar
romantic-comedy; many movies follow similar story lines (e.g.,
Maid in Manhattan). Thus, Pretty Woman has very high degree
in the graph, unlike Miss Congeniality which is a niche genre;
this also contributes to Pretty Woman’s surprisingness.

Through Pretty Woman, FACETS again pleasantly surprises
Susan with Oceans Eleven, which also stars Julia Roberts,
and is in a rather different light-hearted crime or heist genre,
introducing Susan to other very similar movies like Oceans
Twelve and The Italian Job. Figure 1b summarizes Susan’s
exploration. If Susan were to use a conventional visualization
tool to perform the same kind of movie exploration, she would
likely be completely overwhelmed with an incomprehensible
graph visualization (as in Figure 1a).

1.2 Contributions Through FACETS, we contribute:

• A new framework for adaptive exploration of large graphs,
to help users visualize the most subjectively interesting
nodes, continually adapting to the users’ interests.
• A novel formulation of subjective interestingness for graph

exploration, which incorporates divergence between local
and global distributions, and similarity to explored nodes
(Section 2).
• A new measure of surprise over graph neighborhoods —

rather than local node attributes — to draw users in the di-
rection of graph areas with unexpected content (Section 2).
• A scalable interactive graph exploration system, FACETS,

that integrates and embodies our novel ideas (Section 3).
We demonstrate its scalability on real graphs with up to 5
million edges, and its effectiveness through a user study
and three case studies (Section 4).

2 FACETS: Adaptive Graph Exploration
We first formalize the problem for supporting adaptive graph
exploration. Then, we describe our main approach, and proposed
solutions. To enhance readability, we have listed the symbols
used in this paper at Table 1.

2.1 Problem Definition The input is a graph G= (V,E,A)
where V is a set of nodes,E a set of edges, andA a set of node
attributes. Each node vi∈V has a corresponding attribute value
for each attribute (feature) fj ∈A (e.g., degree). Our approach
works with both numerical and categorical attributes. We assume
there are no self-loops (i.e. edges connecting a node to itself).

To guide users with an interesting subset of the nodes and
edges for the given large graph (possibly with thousands of
neighbor nodes), we address the following problem:

DEFINITION 1. Node Ranking for Adaptive Exploration.
Given a starting node va, a sequence of nodes Vh⊂V in which
a user has shown interest, our goal is to find the top-k nodes
among the neighbors of va that are (1) similar by features to the
sequence of Vh nodes (subjective interest) and (2) uncommon
compared to the global distribution (surprising or unexpected).

One of the common approaches to ranking nodes is by their
importance scores, which are often computed using PageRank
[23], Personalized PageRank [13] or random walk with restart
[29]. However, we go further by using surprise and user-driven
interest. We chose surprise, because serendipitous results
and insight do not always come from the most topologically
important nodes [22]. We made FACETS adaptive, because what
makes nodes interesting varies from person to person. For each
node we suggest a combination of the most surprising and most
interesting neighbors at each step of the journey.

2.2 Feature Distributions FACETS uses feature-based
surprise and interest in order to guide the graph exploration



Symbol Description

vi Node i
DJS Jensen-Shannon Divergence
DKL Kullback-Leibler Divergence
si Surprise-score for node vi
ri Interest-score for node vi
Ŝa Surprise scores for all neighbors of va
R̂a Interest scores for all neighbors of va
ws,wr Weights when si and ri are combined
fj j-th feature for nodes
λj Weight of feature fj
Li,j Neighborhood dist. of node vi for feature fj
Gj Global distribution for feature fj
Uj User profile distribution for feature fj

Table 1: Symbols and Notation

process. We first represent each node with a set of features
either by using its attributes (e.g., critics scores for film nodes)
or using common graph-centric measures like degree, PageRank,
centrality measures or labels drawn from clustering (community
detection) approaches.

Once we represent each node with a set of features, we
can represent a set of nodes based on their feature distributions.
When representing the distributions, we choose to use histograms
which is a natural and computationally inexpensive way. A
histogram is created for each feature fj where it consists a set of
bins b∈Bj, each of which has a probability value based on the
number of corresponding nodes. FACETS maintains three types
of distributions depending on which sets of nodes to examine:

1. the neighborhood (or local) distribution, Li,j, is a
distribution of features, fj, over a set of neighbors of a
particular node vi;

2. the global distribution,Gj, is a feature distribution across
all nodes; and

3. the user profile distribution, Uj, is a feature distribution
for a sequence of interesting nodes, Vh, collected from the
user’s past exploration with FACETS.

These three types of feature distributions are used in ranking
nodes by surprise and interest. FACETS works by guiding users
during their graph exploration using both surprisingness and
subjective interest that changes dynamically to suit the user.
We compute each of these rankings by comparing the local (or
neighborhood) feature distributions with the global distributions
to determine surprisingness and the local with the user profile
to determine dynamic subjective interest (Figure 2).

We note that our approach can consider any histogram,
regardless of the binning strategy — e.g., equi-width or
equi-height binning — used to infer the histogram. Here, we
opt to use the parameter-free technique by Kontkanen and
Myllymaki [19] that is based on the Minimum Description

Figure 2: FACETS leverages two kinds of distributions
for calculating a node’s surprisingness: the local histogram
(orange) for a feature distribution in the node’s egonet, and
the global histogram (gray) for the corresponding feature’s
distribution across the whole graph. The difference between
those two distributions is an indicator of whether or not a node is
“unexpected” or surprising compared to the majority in the graph.

Length (MDL) principle. In a nutshell, it identifies as the best
binning one that best balances the complexity of the histogram
and the likelihood of the data under this binning. In practice this
means it automatically chooses both the number of and locations
for the cut points, that define the histogram. It does so purely
on the complexity and size of the data.

2.3 Ranking by Surprise In order to calculate a node’s
surprisingness we compare the distribution of the node’s
neighbors with the global distribution for each feature. We chose
a combined feature-centric and structural approach, because both
structure and features play a critical role in inference problems
[20]. Nodes whose local neighborhood vary greatly from the
global are likely to be more surprising as they do not follow
the general global trends. Although it may also be possible to
measure surprisingness without comparing the two distributions,
by using the base entropy over node features to detect anomalous
nodes; however, this ends up biasing the ranking towards a
skewed distribution. Instead we measure the difference between
the two distributions for more consistent results.

Through our experiments we have chosen Jensen-Shannon
(JS) divergence, a symmetrical version of Kullback-Leibler diver-
gence to construct our surprisingness metric. JS divergence works
well, because the resulting output is in bits so the divergences of
several features can be easily combined into a single score. We
measure surprise by determining the divergence of feature dis-
tributions Li,j over a node’s neighborhood Va (1 hop), from the
global distributions of featuresG (see Equation 2.3). From these
scores we select the top-k most surprising nodes (Equation 2.4).

Given the JS Divergence or information radius between two
distributions P andG:

(2.1) DJS(P ||G)=
1

2
D(P ||Q)+1

2
D(G||Q),

where Q= 1
2(P +G) and D(P ||G) is the KL divergence for

discrete distributions:

(2.2) D(P ||G)=
∑
b

P(b)log
P(b)

G(b)



Figure 3: A. The FACETS user interface showing user exploration of the RottenTomatoes similar-movie graph. In the Exploration
View (at 2), orange nodes are films traversed by the user. Exploring Brazil, the user selects it, highlighting its node in blue border
(at 2), and its features in the Table View (at 1). Brazil has many neighbors (similar movies). The Neighborhood Summary (at
3) ranks them by measures like interest and surprise scores (left), and summarizes the neighborhood’s features (right). Global feature
distributions are gray, local neighborhood distributions are orange. The distributions are shown as compact heat maps, expandable
into histograms. Clicking a neighbor adds it to the Exploration View. The User Profile view (at 4) shows distribution summaries
for the nodes explored thus far, to promote user understanding. B. Nodes are colored (at 2 & 3) based on their interest and surprise
scores. More red means more user interest, more blue more surprising. A higher color saturation represents a higher score.

In Equation 2.2 we use base 2 so that 0≤DJS(P ||G)≤1. For
a fresh node va, whose neighbors are not yet visualized we
first compute the surprise-score, si, of all neighboring nodes
vi∈N(va):

(2.3) si=
∑
fj∈A

λjDJS(Li,j||Gj),

where Lj andGj are the local and global distributions of node-
feature fj and λj is a feature weight. Weighted feature scores in
Equation 2.3 are used to lessen the impact of noisy features and
to allow the user to lessen the contribution of a feature manually.
The si scores are composed into Ŝa, which holds all the scores
for the neighbors of initial node va. We find the most surprising
k-nodes by looking for the largest divergence from the global:

(2.4) argmax
1...k

Ŝa

This yields the top-k most surprising nodes among the neighbors
of node va. Since both the local-neighborhood and global feature
distributions are static, the surprise scores can be precomputed to
improve real time performance. In our implementation, we pre-
compute and store surprise in FACETS to improve performance.

2.4 Ranking by Subjective Interestingness We track the
user’s behavior and record a user profile as they explore their
data. Each clicked node offers valuable details into the types of
nodes in which the user is interested. This forms the user profile
distribution Uj for each feature fj.

To rank the user’s interest in the undisplayed neighbors of
node va we follow a similar approach as in Equation 2.3:

(2.5) ri=
∑
fj∈A

λjDJS(Li,j||Uj),

where Uj is the distribution of feature fj from the user’s recent
node browsing. In this case we want the local distributions that
match better the user’s current profile; i.e. we want the smallest
possible divergences:

(2.6) argmin
1...k

R̂a

This strategy suffers from the cold-start phenomenon, be-
cause a user will not have a profile until they have explored some
nodes, but it is possible to rank nodes only with surprise or con-
ventional measures, until the user has investigated several nodes.



2.5 The FACETS Algorithm We summarize the process
of finding top-k most interesting and surprising neighbors in
our FACETS algorithm. Whenever a user selects a node to
explore, we rank its neighbors based on surprise and subjective
interestingness we explained in the previous subsections. For
each of the neighbors, we compute surprise and interest scores for
each feature and aggregate them based on feature weights λj. We
blend those scores, and return the k nodes with highest scores.

3 The FACETS System
We have developed FACETS, a scalable, interactive system that
materializes our novel ideas for adaptive graph exploration. It
enables users to explore real million-edge graphs in real time.
This section describes how its visualization and interaction
design works closely with its underlying computation to support
user exploration.

3.1 Visualization & User Interface Design. FACETS’s user
interface as shown in Figure 3 has four key elements: The
first main area is (1) the Table View showing the currently
displayed nodes and their features. This provides sortable
node-level information. The central area is (2) the Exploration
View. It is an interactive force-directed graph layout that
demonstrates the structure and relationships among nodes as
the user explores. Node colors are used to encode the surprise
and interest based on the user’s current exploration. We have
(3) the Neighborhood Summary to summarize neighbors, as
we do not show a full set of neighbors in the Exploration View.
The neighborhood summary allows users to investigate the
feature distributions of its currently undisplayed neighbors as
well as sort them by their interest or surprise scores. FACETS
focuses on novel ranking measures. Conventional measures (e.g.,
PageRank, etc.) may also be available via the drop-down menu
in Figure 3.3. This view presents the user with feature heat maps
(darker colors represents higher values) which summarize the
distributions of hidden nodes. When clicked, the heat maps turn
into distribution plots (histograms), where a user can compare
the local neighborhood (orange) and the global (gray). This lets
a user quickly select new nodes based on their feature values
and get a quick summary of this node’s neighborhood. As
a user explores, we construct and display a summary profile
of the important features they have covered in (4) the User
Profile view. The user profile view suggests high-level browsing
behavior to the user; allows for better understanding of where
the user-interest ranking comes from; and allows them to adjust
if they want to ignore certain features in the interest ranking.

3.2 Design Rationale We explain the rationale behind the
design of FACETS in supporting exploration of large graphs.

Exploring and Navigating One of our design goals is to
facilitate both exploration and navigation of graphs. We use
the term graph navigation to refer to the act of traversing graph

data with a known destination or objective. Graph exploration
is more like foraging through the graph without a particular
destination. We facilitate navigation through adaptation and
exploration by filtering out unsurprising and unimportant nodes
while still providing crucial feature details for hidden nodes via
the Neighborhood Summary window. As shown in Figure 3.3,
the user can bring up a summarized view of mouse-hovered
nodes where the top ranked hidden neighbors, local distribution
and global distribution are displayed. These neighborhood
feature distributions allow quick and easy filtering.

Show the Best First Keeping the graph view from becoming an
incomprehensible mess of edges means only showing relevant,
surprising, and interesting nodes. Importance, surprise, and
user-interest are all important aspects of discovery, so we blend
them into the results that are shown first to the user. Figure 3B
illustrates how we visually encode the interest-surprise difference
by hue and the sum of both scores by saturation. Nodes ranked
high tend to have brighter color closer to purple, which becomes
a clear visual cue for the user to quickly identify desired nodes.
FACETS is almost completely free of parameters, making it
simpler for users to explore their graphs.

Adaptive and Adjustable Because user-interest varies greatly
across users and even time, our design must be able to track the
user’s exploration behavior in order to approximate what is moti-
vating them. Adapting as the user explores helps provide critical
insight into users’ latent objectives, because they can see how
they have explored and also may find what they seek. During
exploration, the user profile updates dynamically to illustrate a
summary of their feature traversal, while the exploration view
provides the topological traversal. It is not necessary to preset any
parameters in order for our adaptive algorithm to work, because
the rankings are done in a black-box fashion during users’
explorations. We allow them to directly manipulate the balance
of features used in the interest calculation and choose which
features form the ranking. This enables the user to dynamically
increase or decrease the importance of any features during their
exploration and immediately impact the interest ranking.

4 Evaluation
We evaluate the effectiveness and speed of FACETS using large
real-world graphs. FACETS is designed to support open-ended
discovery and exploration suited to users’ subjective interests,
which is inherently challenging to evaluate [8]. Traditional
quantitative user studies (e.g., measuring task completion time)
would impose artificial constraints that interfere with and even
potentially suppress how users would naturally explore based
on curiosity, counteracting the benefits that FACETS aims to
foster. Given the exploratory nature of FACETS, canonical
quantitative metrics of “success” like precision, recall, MAE, and
RMSE [11, 33, 14] are not directly applicable here. For these
reasons, we demonstrate FACETS’s effectiveness through several



Network Nodes Edges Obs. Speed Case
Study Study

Rotten Tomatoes 17,074 72,140 X X X
DBLP 317,080 1,049,866 X X
Google Web 875,713 5,105,039 X
Youtube 1,134,890 2,987,624 X

Table 2: Graph datasets used in our observational study, speed
testing, and case studies. They were picked for their variety in
size and domain. Rotten Tomatoes was used in the observational
study due to its general familiarity to the public.

complementary ways: (1) a small observational study based on
the study of exploratory systems from [8], (2) run time analysis
of our surprise and interest rankings on four real world graphs,
(3) a comparison of our scoring with canonical node ranking
techniques, and three case studies that investigate the results of
our algorithm on a movie graph and citation network.

4.1 Graph Datasets We use the Rotten Tomatoes (RT) movie
dataset as our main dataset, which is an attributed graph that
contains basic information per movie (e.g., released year), as
well as users’ average ratings and critics scores. We conducted
the observational study using the RT graph. We used four
datasets for runtime analysis: RT graph, Google Web network,
DBLP co-authorship graph, and YouTube network datasets [21].
Table 2 summarizes the graphs’ basic statistics and in which
parts of our evaluation they were used.

4.2 Observational Study We conducted a small observa-
tional study with semi-structured interviews and surveys. Four
participants were recruited through our institution’s mailing lists.
We screened for participants with at least basic knowledge of
movies (e.g., enjoy occasionally watching movies when they
grew up). Three subjects were female and one was male, all had
completed a bachelor’s degree. They ranged in age from 21 to
27, with an average age of 23.

The participants were provided a 10-minute tutorial of
FACETS, which demonstrated the different parts of FACETS and
how they can be used to investigate the RT graph. They were
asked to think aloud for the whole study, so that if they became
confused or found something interesting we would be able to
take notes. For all tasks, participants were free to choose movies
to inspect, so that they would remain interested during their
exploration. They could also look up movies on RottenTomatoes’
website if they were curious about details.

Every participant performed three general tasks, each lasted
for 10 minutes:

1. Open exploration of the RT graph to help acquaint the
participants with FACETS

2. Investigation of the surprising neighbors of movies using
the neighbor summary view (participants chose their own
starting movies)

3. Exploration of movies, chosen by the participant, with
consistent years (e.g., around mid 90’s)

The first task was presented in order to encourage the
participants to ask questions about the system, as well as
investigate how they would use it without being directed. We
were curious about which features they would use and if there
were any behavioral patterns we could find during exploration.

The second task was used to investigate quality of the
surprising results. We let the participants pick their own starting
movies since it would be easier for them to work with movies
they knew. Our requirement was that the movie had at least five
neighbors, so that the exploration options weren’t trivial.

For the third task, we asked participants to choose and
investigate a set of movies that interest them, with consistent
years, so that they could see an example of how FACETS will
adapt the interest ranking based on their recently clicked nodes.
This task allowed the participants to comment on and better
understand the interest ranking, and allowed us to get feedback
on the quality of subjectively interesting results. The observations
and feedback from the study allowed us to understand how
FACETS’s visual encoding guides participants during exploration.

4.2.1 Observational Study Results We measured several
aspects of FACETS using 7-point Likert scales (provided as a
survey at the end of the study). The participants enjoyed using
FACETS and additionally found that our system was easy to
learn, easy to use and likeable overall; although this is a common
experimental effect, we find the results encouraging. Users
found both our rankings to be useful during their exploration.
Several participants stated that the visualization combined with
the interest and unexpectedness rankings to be very exciting
during exploration. One participant stated, “it was exciting
when I double clicked a node and saw how it was connected
to my explored movies”. FACETS was able to find subjectively
interesting content for our participants as they explored.

Participants primarily spent time in two areas, on the main
graph layout and in the neighborhood summary view. They used
the neighborhood summary view to find and add new nodes
and then inspected the relationships of these newly added nodes
in the graph view. The table view was used primarily to select
already-added nodes by name.

Two participants reported not fully understanding how
the user profile was affecting the results until the second task.
The participants used a common strategy during exploration,
in which they would add neighbors to a desired node and then
spatially reorganize the results by dragging some of the new
nodes to a clear area. They repeated this process and often
inspected new nodes that shared edges with previous content.

In summary, our design goal was generally met: our
participants deem FACETS as an easy-to-learn and easy-to-use
system with highly rated qualities of both interesting and
unexpected neighborhood suggestions.



Figure 4: FACETS ranks neighbors in linear time and finishes in
seconds. We show the average time to calculate the JS divergence
for surprise and the combination of surprise and interest over
a neighborhood of size n. FACETS combines the ranks if there
is sufficient user profile data. We tested with contiguous node
ordering to simulate normal exploration and random ordering
to simulate a user searching using the table view.

4.3 Runtime Analysis Next, we evaluate the scalability
of FACETS over several million-edge graphs (Table 2). Our
evaluation focuses on demonstrating FACETS’s practicality in
computing exploratory rankings in time that is linear in the
number of neighbors and of node attributes, returning results
in no more than 1.5 seconds for the 5 million edge Google
Web graph that we tested. We expect these runtime results
will significantly improve with future engineering efforts and
optimization techniques. The experiments were run on a
machine with an Intel i5-4670K at 3.65 GHz and 32GB RAM.

One of our goals is sub-second rankings, so that interactions
with FACETS are smooth. This is why we have chosen to treat
nodes in the tail of the degree distribution separately than their
modest degree neighbors.

We have analyzed the runtime of FACETS, in Figure 4, using
the graphs from Table 2; all but the RT graph used eight synthetic
features. We use both random ordering and contiguous node or-
dering, displayed as Rand and Hop in Figure 4. Random ordering
simulates using the search functionality while hop ordering simu-
lates hopping from one node to its neighbors during exploration.
High degree nodes have a higher chance of being selected and
account for the fact that hop sometimes is slower than random
in Figure 4. The graphs we tested demonstrate that the cost of
the ranking is linear in the number of neighbors in the neighbor-
hood. Our ranking requires both a value lookup and a single JS
divergence calculation for each node and for each feature.

As mentioned earlier, the surprise scores are precomputed
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Figure 5: FACETS scales linearly in the number of features

and can be accessed quickly. The cost to rank neighbors comes
largely from the interest scores which cannot be precomputed.
The cost, in JS divergence calculations, is O(n · f), and is
asymptotically linear in both the number of neighbors n and the
number of features f . Given our use of MDL histograms for
the features, we can scale the number of features at low linear
incremental cost (see Figure 5). Each neighbor only requires
exactly one JS divergence calculation per feature (comparing
the user profile and the local distribution).

Since many real world graphs contain triangles, it is
very likely that redundant calls will be made during a user’s
exploration. We use this to our advantage and cache the
distributions for each visited node rather than refetching them
each time. Graphs with higher clustering coefficient may achieve
better caching performance. For all but the YouTube graph, the
caching became memoizing as the entirety of the nodes could
fit in the cache.

4.4 Case Study We present a case study using the DBLP
co-authorship graph to illustrate how FACETS helps users explore
graphs incrementally, gain understanding, and discover new
insights.

DBLP Example: Data mining and HCI researchers This ex-
ample uses data collected from DBLP, a computer science bibliog-
raphy website. The graph is an undirected, unweighted graph de-
scribing academic co-authorship. Nodes are authors, and an edge
connects two authors who have co-authored at least one paper.

Our user Jane is a first-year graduate student new to data
mining research. She just started reading seminal articles written
by Philip Yu (topmost orange node in Figure 6). FACETS quickly
helps Jane identify other prolific authors in the data mining and
database communities, like Jiawei Han, Rakesh Agrawal, Raghu
Ramakrishnan, and Christos Faloutsos; these authors have
similar feature distributions as Philip Yu (e.g., very high degree).
Jane chooses to further explore Christos Faloutsos’s co-authors.
FACETS suggests Duen Horng Chau as one of the surprising
co-authors, who seems to have relatively low degree (i.e., few
publications) but has published with highly-prolific co-authors.
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Christos Faloutsos

Philip S. Yu

Brad A. Myers

Mary Beth Rosson

James A. Landay

Gregory D. Abowd
Scott E. Hudson

John M. Carroll

Catherine Plaisant

Chris North Ben Shneiderman

Jiawei Han

Jeffrey F. Naughton

Raghu Ramakrishnan
Rakesh Agrawal

Interesting

Interesting

Interesting

Surprising

Figure 6: Visualization of our user Jane’s exploration of the
DBLP co-authorship graph. Jane starts with Philip Yu. FACETS
then suggests Christos Faloutsos and several others as prolific
data mining researchers. Through Christos, FACETS suggests
Duen Horng Chau as a surprising author as he has published
with both data mining and human-computer interaction (HCI)
researchers, like Brad Myers. Through Brad, FACETS helps
Jane discover communities of HCI researchers, including Ben
Shneiderman, the visualization guru.

Among these is Brad Myers (leftmost orange node in Figure 6),
who publishes not in data mining, but in human-computer
interaction (HCI). This exploration introduces Jane to a new field,
and she wants to learn more. Using FACETS’s interest-based
suggestion, she discovers a community of co-authors who have
published with Brad; among them, Mary Beth Rosson further
leads to another community of HCI researchers, which includes
Ben Shneiderman, the visualization guru.

5 Related Work
Graph Trails and Paths In information retrieval. click trail
analysis has been used to analyze the website-to-website paths of
millions of users in order to improve the ranking of search results
[4, 27, 35]. Intermediate sites and destinations of common trails
can be included in search results. West et al. analyzed Wikipedia
users’ abilities and common patterns as they explored Wikipedia
[34]. They observed that users would balance between a concep-
tually simple solution at the cost of efficiency – users may take
routes that are longer but easy to comprehend. Their system also
used trail analysis in order to try to predict where a user would go
based on the user’s article-trail features. In our case, we do not
have millions of explored paths through our input network and
cannot directly rely on the aggregate analysis of trails used above.

Degree of Interest The visualization community has also
investigated local graph exploration to handle very large graphs
[30, 1, 36, 24]. Bottom-up exploration first appeared in [12],
a tool for exploring hierarchies using a “degree of interest”
(DOI) function to rank the relevance of currently undisplayed
nodes. The idea of DOI was later expanded by [30] to apply
to a greater set of graph features. The Apolo system [5] further
improves on it to allow users to freely define their own arbitrary
number of clusters, which it uses to determine what to show
next, through the Belief Propagation algorithm. Recently, the
DOI idea is applied to dynamic graph settings, to capture salient
graph changes [1]. We have built on the idea of using a DOI to
determine the ranking for which nodes we show users; however,
we use a dynamic DOI function which changes to suit the
browsing behavior of the users as they explore their data.

Surprise and Serendipity Many fascinating works point
to the great potential in leveraging surprise and serendipity
[3, 6, 7, 22, 31]. Realizing that applying them on graph explo-
ration could be a novel and practical idea, we decided to focus
on studying them in this work as they are under-explored, unlike
conventional importance-based metrics [1, 5, 30]. Algorithms
like Oddball [2], an unsupervised approach to detect anomalies
in weighted graphs, can be used to detect surprising nodes. The
TANGENT algorithm by Onuma et al. [22] is a parameter-free
technique used to discover surprising recommendations by
measuring how broadly new nodes expand edges to new clusters.

Similar to our approach, several researchers have developed
methods to measure interestingness based on comparing data
distributions. Vartak et al. [31] presented the idea of finding
interesting visualizations based on an underlying database query.
Andre et al. [3] studied the use of serendipity in Web search
and the effects of personalization. They found that serendipity
and personalization could be useful for many queries, ideas
which we leverage in FACETS. De Bie [6, 7] proposed a
general framework for measuring the interestingness of data
mining results as their log-likelihood given a Maximum Entropy
distribution based on user’s background knowledge. Instead, we
consider the Jensen-Shannon divergence between the local and
global histograms as the surprisingness of a node. Our notion
of subjective interestingness comes closer to that of Tatti and
Vreeken [28], who aimed to reduce data redundancy. Our goal is
different, as we are specifically interested in identifying nodes and
neighborhoods that are similar to those the user chose to explore.

6 Conclusion
We presented FACETS, an integrated approach that combines
visualization and computational techniques to help users perform
adaptive exploration of large graphs. FACETS overcomes many
issues commonly encountered when visualizing large graphs
by showing the users only the most subjectively interesting
material as they explore. We do this by ranking the neighbors of
each node by surprisingness (divergence between local features



and global features) and subjective interest based on what the
user has explored so far (divergence between local features
and user profile). To evaluate the effectiveness of FACETS, we
used several complementary ways. Our FACETS algorithm is
scalable and is linear in the number of neighbors and linear in
the number of features. Participants in a small observational
study consistently rated FACETS well.
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