
Search Rank Fraud and Malware
Detection in Google Play

Mahmudur Rahman, Mizanur Rahman, Bogdan Carbunar, and Duen Horng Chau

Abstract—Fraudulent behaviors in Google Play, the most popular Android app market, fuel search rank abuse and malware

proliferation. To identify malware, previous work has focused on app executable and permission analysis. In this paper, we introduce

FairPlay, a novel system that discovers and leverages traces left behind by fraudsters, to detect both malware and apps subjected to

search rank fraud. FairPlay correlates review activities and uniquely combines detected review relations with linguistic and behavioral

signals gleaned from Google Play app data (87 K apps, 2.9 M reviews, and 2.4M reviewers, collected over half a year), in order to

identify suspicious apps. FairPlay achieves over 95 percent accuracy in classifying gold standard datasets of malware, fraudulent and

legitimate apps. We show that 75 percent of the identified malware apps engage in search rank fraud. FairPlay discovers hundreds of

fraudulent apps that currently evade Google Bouncer’s detection technology. FairPlay also helped the discovery of more than 1,000

reviews, reported for 193 apps, that reveal a new type of “coercive” review campaign: users are harassed into writing positive reviews,

and install and review other apps.

Index Terms—Android market, search rank fraud, malware detection

Ç

1 INTRODUCTION

THE commercial success of Android app markets such as
Google Play [1] and the incentive model they offer to

popular apps, make them appealing targets for fraudulent
and malicious behaviors. Some fraudulent developers
deceptively boost the search rank and popularity of their
apps (e.g., through fake reviews and bogus installation
counts) [2], while malicious developers use app markets as a
launch pad for their malware [3], [4], [5], [6]. The motivation
for such behaviors is impact: app popularity surges translate
into financial benefits and expeditedmalware proliferation.

Fraudulent developers frequently exploit crowdsourcing
sites (e.g., Freelancer [7], Fiverr [8], BestAppPromotion [9])
to hire teams of willing workers to commit fraud collec-
tively, emulating realistic, spontaneous activities from unre-
lated people (i.e., “crowdturfing” [10]), see Fig. 1 for an
example. We call this behavior “search rank fraud”.

In addition, the efforts of Androidmarkets to identify and
remove malware are not always successful. For instance,
Google Play uses the Bouncer system [11] to remove mal-
ware. However, out of the 7,756 Google Play apps we ana-
lyzed using VirusTotal [12], 12 percent (948) were flagged by
at least one anti-virus tool and 2 percent (150) were identified
asmalware by at least 10 tools (see Fig. 6).

Previous mobile malware detection work has focused on
dynamic analysis of app executables [13], [14], [15] as well
as static analysis of code and permissions [16], [17], [18].
However, recent Android malware analysis revealed that
malware evolves quickly to bypass anti-virus tools [19].

In this paper, we seek to identify both malware and
search rank fraud subjects in Google Play. This combination
is not arbitrary: we posit that malicious developers resort to
search rank fraud to boost the impact of their malware.

Unlike existing solutions, we build this work on the obser-
vation that fraudulent and malicious behaviors leave behind
telltale signs on app markets. We uncover these nefarious
acts by picking out such trails. For instance, the high cost of
setting up valid Google Play accounts forces fraudsters to
reuse their accounts across review writing jobs, making
them likely to review more apps in common than regular
users. Resource constraints can compel fraudsters to post
reviews within short time intervals. Legitimate users
affected by malware may report unpleasant experiences in
their reviews. Increases in the number of requested permis-
sions from one version to the next, which we will call
“permission ramps”, may indicate benign to malware
(Jekyll-Hyde) transitions.

1.1 Contributions

We propose FairPlay, a system that leverages the above
observations to efficiently detect Google Play fraud and
malware (see Fig. 7). Our major contributions are:

A Fraud and Malware Detection Approach. To detect fraud
and malware, we propose and generate 28 relational, behav-
ioral and linguistic features, that we use to train supervised
learning algorithms [Section 4]:

� We formulate the notion of co-review graphs to model
reviewing relations between users. We develop PCF,

� M. Rahman is with IBM, Raleigh, NC 27703.
E-mail: mrahman.fiu@gmail.com.

� M. Rahman and B. Carbunar are with FIU, Miami, FL 33199.
E-mail: {mrahm031, carbunar}@cs.fiu.edu.

� D.H. Chau is with Georgia Tech, Atlanta, GA 30332.
E-mail: polo@gatech.edu.

Manuscript received 1 June 2016; revised 17 Dec. 2016; accepted 4 Feb. 2017.
Date of publication 13 Feb. 2017; date of current version 27 Apr. 2017.
Recommended for acceptance by L. Akoglu.
For information on obtaining reprints of this article, please send e-mail to:
reprints@ieee.org, and reference the Digital Object Identifier below.
Digital Object Identifier no. 10.1109/TKDE.2017.2667658

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 29, NO. 6, JUNE 2017 1329

1041-4347� 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

an efficient algorithm to identify temporally con-
strained, co-review pseudo-cliques—formed by
reviewers with substantially overlapping co-review-
ing activities across short time windows.

� We use temporal dimensions of review post times to
identify suspicious review spikes received by apps;
we show that to compensate for a negative review,
for an app that has rating R, a fraudster needs to post
at least R�1

5�R positive reviews. We also identify apps
with “unbalanced” review, rating and install counts,
as well as appswith permission request ramps.

� We use linguistic and behavioral information to (i)
detect genuine reviews from which we then (ii)
extract user-identified fraud and malware indicators.

Tools to Collect and Process Google Play Data. We have
developed GPCrawler, a tool to automatically collect data
published by Google Play for apps, users and reviews, as
well as GPad, a tool to download apks of free apps and scan
them for malware using VirusTotal.

Novel Longitudinal and Gold Standard Datasets. We contrib-
uted a longitudinal dataset of 87,223 freshly posted Google
Play apps (along with their 2.9 M reviews, from 2.3 M
reviewers) collected between October 2014 and May 2015.
We have leveraged search rank fraud expert contacts in
Freelancer [7], anti-virus tools and manual verifications to
collect gold standard datasets of hundreds of fraudulent,
malware and benign apps [x 3]. We have published these
datasets on the project website [20].

1.2 Results

FairPlay has high accuracy and real-world impact:
High Accuracy. FairPlay achieves over 97 percent accu-

racy in classifying fraudulent and benign apps, and over
95 percent accuracy in classifying malware and benign
apps. FairPlay significantly outperforms the malware indi-
cators of Sarma et al. [16]. Furthermore, we show that
malware often engages in search rank fraud as well:
When trained on fraudulent and benign apps, FairPlay
flagged as fraudulent more than 75 percent of the gold
standard malware apps section 5.3.

Real-World Impact: Uncover Fraud & Attacks. FairPlay dis-
covers hundreds of fraudulent apps. We show that these

apps are indeed suspicious: the reviewers of 93.3 percent of
them form at least 1 pseudo-clique, 55 percent of these apps
have at least 33 percent of their reviewers involved in a
pseudo-clique, and the reviews of around 75 percent of
these apps contain at least 20 words indicative of fraud.

FairPlay also enabled us to discover a novel, coercive
review campaign attack type, where app users are har-
assed into writing a positive review for the app, and
install and review other apps. We have discovered 1,024
coerced reviews, from users complaining about 193 such
apps [Sections 5.4 & 5.5].

2 BACKGROUND, RELATED WORK, AND OUR

DIFFERENCES

System Model. We focus on the Android app market ecosys-
tem of Google Play. The participants, consisting of users
and developers, have Google accounts. Developers create
and upload apps, that consist of executables (i.e., “apks”), a
set of required permissions, and a description. The app mar-
ket publishes this information, along with the app’s
received reviews, ratings, aggregate rating (over both
reviews and ratings), install count range (predefined buck-
ets, e.g., 50-100, 100-500), size, version number, price, time
of last update, and a list of “similar” apps. Each review con-
sists of a star rating ranging between 1-5 stars, and some
text. The text is optional and consists of a title and a descrip-
tion. Google Play limits the number of reviews displayed
for an app to 4,000. Fig. 2 illustrates the participants in Goo-
gle Play and their relations.

Adversarial Model. We consider not only malicious devel-
opers, who upload malware, but also rational fraudulent
developers. Fraudulent developers attempt to tamper with
the search rank of their apps, e.g., by recruiting fraud
experts in crowdsourcing sites to write reviews, post rat-
ings, and create bogus installs. While Google keeps secret
the criteria used to rank apps, the reviews, ratings and
install counts are known to play a fundamental part (see
e.g., [21]).

To review or rate an app, a user needs to have a Google
account, register a mobile device with that account, and
install the app on the device. This process complicates the
job of fraudsters, who are thus more likely to reuse accounts
across jobs. The reason for search rank fraud attacks is
impact. Apps that rank higher in search results, tend to
receive more installs. This is beneficial both for fraudulent
developers, who increase their revenue, and malicious
developers, who increase the impact of their malware.

Fig. 1. An “install job” posting from Freelancer [7], asking for 2,000 installs
within 3 days (in orange), in an organizedway that includes expertise veri-
fications and provides secrecy assurances (in blue). Text enlarged for
easier reading.

Fig. 2. Google Play components and relations. Google Play’s functional-
ity centers on apps, shown as red disks. Developers, shown as orange
disks upload apps. A developer may upload multiple apps. Users, shown
as blue squares, can install and review apps. A user can only review an
app that he previously installed.

1330 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 29, NO. 6, JUNE 2017

2.1 Android Malware Detection

Zhou and Jiang [19] collected and characterized 1,200
Android malware samples, and reported the ability of mal-
ware to quickly evolve and bypass the detection mecha-
nisms of anti-virus tools.

Burguera et al. [13] used crowdsourcing to collect system
call traces from real users, then used a “partitional” cluster-
ing algorithm to classify benign and malicious apps. Shabtai
et al. [14] extracted features from monitored apps (e.g.,
CPU consumption, packets sent, running processes) and
used machine learning to identify malicious apps. Grace
et al. [15] used static analysis to efficiently identify high and
medium risk apps.

Previous work has also used app permissions to pinpoint
malware [16], [17], [18]. Sarma et al. [16] use risk signals
extracted from apppermissions, e.g., rare critical permissions
(RCP) and rare pairs of critical permissions (RPCP), to train
SVM and inform users of the risks versus benefits tradeoffs
of apps. In Section 5.3 we show that FairPlay significantly
improves on the performance achieved by Sarma et al. [16].

Peng et al. [17] propose a score to measure the risk of
apps, based on probabilistic generative models such as
Naive Bayes. Yerima et al. [18] also use features extracted
from app permissions, API calls and commands extracted
from the app executables.

Sahs and Khan [22] used features extracted from app per-
missions and control flow graphs to train an SVM classifier
on 2,000 benign and less than 100 malicious apps. Sanz
et al. [23] rely strictly on permissions as sources of features
for several machine learning tools. They use a dataset of
around 300 legitimate and 300 malware apps.

Google has deployed Bouncer, a framework that moni-
tors published apps to detect and remove malware. Ober-
heide and Miller [11] have analyzed and revealed details
of Bouncer (e.g., based in QEMU, using both static and
dynamic analysis). Bouncer is not sufficient—our results
show that 948 apps out of 7,756 apps that we downloaded
from Google Play are detected as suspicious by at least
1 anti-virus tool. In addition, FairPlay detected suspicious
behavior for apps that were not removed by Bouncer during
a more than 6 months long interval.

Instead of analyzing app executables, FairPlay employs a
relational, linguistic and behavioral approach based on lon-
gitudinal app data. FairPlay’s use of app permissions differs
from existing work through its focus on the temporal
dimension, e.g., changes in the number of requested permis-
sions, in particular the “dangerous” ones. We observe that
FairPlay identifies and exploits a new relationship between
malware and search rank fraud.

2.2 Graph Based Opinion Spam Detection

Graph based approaches have been proposed to tackle
opinion spam [24], [25]. Ye and Akoglu [24] quantify the
chance of a product to be a spam campaign target, then clus-
ter spammers on a 2-hop subgraph induced by the products
with the highest chance values. Akoglu et al. [25] frame
fraud detection as a signed network classification problem
and classify users and products, that form a bipartite net-
work, using a propagation-based algorithm.

FairPlay’s relational approach differs as it identifies apps
reviewed in a contiguous time interval, by groups of users

with a history of reviewing apps in common. FairPlay com-
bines the results of this approach with behavioral and lin-
guistic clues, extracted from longitudinal app data, to detect
both search rank fraud and malware apps. We emphasize
that search rank fraud goes beyond opinion spam, as it
implies fabricating not only reviews, but also user app
install events and ratings.

3 THE DATA

We have collected longitudinal data from 87K+ newly
released apps over more than 6 months, and identified gold
standard data. In the following, we briefly describe the tools
we developed, then detail the data collection effort and the
resulting datasets.

Data Collection Tools. We have developed the Google Play
Crawler (GPCrawler) tool, to automatically collect data pub-
lished by Google Play for apps, users and reviews. Google
Play prevents scripts from scrolling down a user page.
Thus, to collect the ids of more than 20 apps reviewed by a
user. To overcome this limitation, we developed a Python
script and a Firefox add-on. Given a user id, the script opens
the user page in Firefox. When the script loads the page, the
add-on becomes active. The add-on interacts with Google
Play pages using content scripts (Browser specific compo-
nents that let us access the browsers native API) and port
objects for message communication. The add-on displays a
“scroll down” button that enables the script to scroll down
to the bottom of the page. The script then uses a DOMParser
to extract the content displayed in various formats by Goo-
gle Play. It then sends this content over IPC to the add-on.
The add-on stores it, using Mozilla XPCOM components, in
a sand-boxed environment of local storage in a temporary
file. The script then extracts the list of apps rated or
reviewed by the user.

We have also developed the Google Play App Downloader
(GPad), a Java tool to automatically download apks of free
apps on a PC, using the open-source Android Market
API [26]. GPad takes as input a list of free app ids, a Gmail
account and password, and a GSF id. GPad creates a new
market session for the “androidsecure” service and logs in.
GPad sets parameters for the session context (e.g., mobile
device Android SDK version, mobile operator, country),
then issues a GetAssetRequest for each app identifier in the
input list. GPad introduces a 10s delay between requests.
The result contains the url for the app; GPad uses this url to
retrieve and store the app’s binary stream into a local file.
After collecting the binaries of the apps on the list, GPad
scans each app apk using VirusTotal [12], an online malware
detector provider, to find out the number of anti-malware
tools (out of 57: AVG, McAfee, Symantec, Kaspersky, Mal-
warebytes, F-Secure, etc.) that identify the apk as suspicious.
We used 4 servers (PowerEdge R620, Intel Xeon E-26XX v2
CPUs) to collect our datasets, whichwe describe next.

3.1 Longitudinal App Data

In order to detect suspicious changes that occur early in
the lifetime of apps, we used the “New Releases” link to
identify apps with a short history on Google Play. Our
interest in newly released apps stems from our analysis of
search rank fraud jobs posted on crowdsourcing sites, that

RAHMAN ET AL.: SEARCH RANK FRAUD AND MALWARE DETECTION IN GOOGLE PLAY 1331

revealed that app developers often recruit fraudsters early
after uploading their apps on Google Play. Their intent is
likely to create the illusion of an up-and-coming app, that
may then snowball with interest from real users. By moni-
toring new apps, we aim to capture in real-time the
moments when such search rank fraud campaigns begin.

We approximate the first upload date of an app using the
day of its first review.We have started collecting new releases
in July 2014 and by October 2014 we had a set of 87,223 apps,
whose first upload time was under 40 days prior to our first
collection time, when they had atmost 100 reviews.

Fig. 3 shows the distribution of the fresh app categories.
We have collected app from each category supported by
Google Play, with at least 500 apps per category (Music &
Audio) and more than 4,500 for the most popular category
(Personalization). Fig. 4 shows the average rating distribu-
tion of the fresh apps. Most apps have at least a 3.5 rating
aggregate rating, with few apps between 1 and 2.5 stars.
However, we observe a spike at more than 8,000 apps with
less than 1 star.

We have collected longitudinal data from these 87,223
apps between October 24, 2014 and May 5, 2015. Specifi-
cally, for each app we captured “snapshots” of its Google
Play metadata, twice a week. An app snapshot consists of
values for all its time varying variables, e.g., the reviews,
the rating and install counts, and the set of requested

permissions (see Section 2 for the complete list). For each of
the 2,850,705 reviews we have collected from the 87,223
apps, we recorded the reviewer’s name and id (2,380,708
unique ids), date of review, review title, text, and rating.

This app monitoring process enables us to extract a suite
of unique features, that include review, install and permis-
sion changes. In particular, we note that this approach ena-
bles us to overcome the Google Play limit of 4,000 displayed
reviews per app: each snapshot will capture only the
reviews posted after the previous snapshot.

3.2 Gold Standard Data

Malware Apps. We used GPad (see Section 3) to collect the
apks of 7,756 randomly selected apps from the longitudinal
set (see Section 3.1). Fig. 6 shows the distribution of flags
raised by VirusTotal, for the 7,756 apks. None of these apps
had been filtered by Bouncer [11]! From the 523 apps that
were flagged by at least 3 tools, we selected those that had
at least 10 reviews, to form our “malware app” dataset, for
a total of 212 apps. We collected all the 8,255 reviews of
these apps.

Fraudulent Apps. We used contacts established among
Freelancer [7]’s search rank fraud community, to obtain the
identities of 15 Google Play accounts that were used to write
fraudulent reviews for 201 unique apps. We call the 15
accounts “seed fraud accounts” and the 201 apps “seed
fraud apps”. Fig. 5 shows the graph formed by the review
habits of the 15 seed accounts: nodes are accounts, edges
connect accounts who reviewed apps in common, and edge
weights represent the number of such commonly reviewed
apps. The 15 seed fraud accounts form a suspicious clique.
This shows that worker controlled accounts are used to
review many apps in common: the weights of the edges
between the seed fraud accounts range between 60 and 217.

Fraudulent Reviews. We have collected all the 53,625
reviews received by the 201 seed fraud apps. The 15 seed
fraud accounts were responsible for 1,969 of these reviews.
We used the 53,625 reviews to identify 188 accounts, such
that each account was used to review at least 10 of the

Fig. 3. Distribution of app types for the 87,223 fresh app set.With the slight
exception of “Personalization” and “Sports” type spikes, we have achieved
an almost uniform distribution across all app types, as desirable.

Fig. 4. Average rating distribution for the 87,223 fresh app set. Most
apps have more than 3.5 stars, few have between 1 and 2.5 stars, but
more than 8,000 apps have less than 1.

Fig. 5. Co-review graph of 15 seed fraud accounts (red nodes) and the
188 GbA accounts (orange nodes). Edges indicate reviews written in
common by the accounts corresponding to the endpoints. We only show
edges having at least one seed fraud account as an endpoint. The
15 seed fraud accounts form a suspicious clique with edges weights that
range between 60 and 217. The GbA accounts are also suspiciously
well connected to the seed fraud accounts: the weights of their edges to
the seed fraud accounts ranges between 30 and 302.

1332 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 29, NO. 6, JUNE 2017

201 seed fraud apps (for a total of 6,488 reviews). We call
these, guilt by association (GbA) accounts. Fig. 5 shows the co-
review edges between these GbA accounts (in orange) and
the seed fraud accounts: the GbA accounts are suspiciously
well connected to the seed fraud accounts, with theweights of
their edges to the seed accounts ranging between 30 and 302.

To reduce feature duplication, we have used the 1,969
fraudulent reviews written by the 15 seed accounts and the
6,488 fraudulent reviews written by the 188 GbA accounts
for the 201 seed fraud apps, to extract a balanced set of
fraudulent reviews. Specifically, from this set of 8,457
(¼ 1; 969þ 6; 488) reviews, we have collected 2 reviews
from each of the 203 (¼ 188þ 15) suspicious user accounts.
Thus, the gold standard dataset of fraudulent reviews con-
sists of 406 reviews.

The reason for collecting a small number of reviews from
each fraudster is to reduce feature duplication: many of the
features we use to classify a review are extracted from the
user who wrote the review (see Table 2).

Benign Apps. We have selected 925 candidate apps from
the longitudinal app set, that have been developed by Goo-
gle designated “top developers”. We have used GPad to fil-
ter out those flagged by VirusTotal. We have manually
investigated 601 of the remaining apps, and selected a set of
200 apps that (i) have more than 10 reviews and (ii) were
developed by reputable media outlets (e.g., NBC, PBS) or
have an associated business model (e.g., fitness trackers).
We have also collected the 32,022 reviews of these apps.

Genuine Reviews. We have manually collected a gold stan-
dard set of 315 genuine reviews, as follows. First, we have
collected the reviews written for apps installed on the
Android smartphones of the authors. We then used
Google’s text and reverse image search tools to identify and
filter those that plagiarized other reviews or were written
from accounts with generic photos. We have then manually
selected reviews that mirror the authors’ experience, have
at least 150 characters, and are informative (e.g., provide
information about bugs, crash scenario, version update
impact, recent changes).

4 FAIRPLAY: PROPOSED SOLUTION

We now introduce FairPlay, a system to automatically
detect malicious and fraudulent apps.

4.1 FairPlay Overview

FairPlay organizes the analysis of longitudinal app data into
the following 4 modules, illustrated in Fig. 7. The Co-Review
Graph (CoReG)module identifies apps reviewed in a contig-
uous time window by groups of users with significantly
overlapping review histories. The Review Feedback (RF)
module exploits feedback left by genuine reviewers, while
the Inter Review Relation (IRR) module leverages relations
between reviews, ratings and install counts. The Jekyll-Hyde
(JH) module monitors app permissions, with a focus on dan-
gerous ones, to identify apps that convert from benign to
malware. Each module produces several features that are
used to train an app classifier. FairPlay also uses general fea-
tures such as the app’s average rating, total number of
reviews, ratings and installs, for a total of 28 features. Table 1

Fig. 6. Apks detected as suspicious (y axis) by multiple anti-virus tools (x
axis), through VirusTotal [12], from a set of 7,756 downloaded apks.

Fig. 7. FairPlay system architecture. The CoReG module identifies sus-
picious, time related co-review behaviors. The RF module uses linguistic
tools to detect suspicious behaviors reported by genuine reviews.
The IRR module uses behavioral information to detect suspicious apps.
The JH module identifies permission ramps to pinpoint possible Jekyll-
Hyde app transitions.

TABLE 1
FairPlay’s Most Important Features, Organized

by Their Extracting Module

Notation Definition

CoReGModule
nCliques number of pseudo-cliques with r � u
rmax, rmed, rSD clique density: max, median, SD
CSmax, CSmed, CSSD pseudo-cliques size: max, median, SD
inCliqueCount % of nodes involved in pseudo-cliques

RFModule
malW % of reviews with malware indicators
fraudW , goodW % of reviews with fraud/benign words
FRI fraud review impact on app rating

IRRModule
spikeCount, spikeamp days with spikes & spike amplitude
I1=Rt1, I2=Rt2 install to rating ratios
I1=Rv1, I2=Rv2 install to review ratios

JHModule
permCt, dangerCount # of total and dangerous permissions
rampCt # of dangerous permission ramps
dangerRamp # of dangerous permissions added

Section 4.2 describes r and u.

RAHMAN ET AL.: SEARCH RANK FRAUD AND MALWARE DETECTION IN GOOGLE PLAY 1333

summarizes the most important features. We now detail
eachmodule and the features it extracts.

4.2 The Co-Review Graph (CoReG) Module

This module exploits the observation that fraudsters who
control many accounts will re-use them across multiple jobs.
Its goal is then to detect sub-sets of an app’s reviewers that
have performed significant common review activities in the
past. In the following, we describe the co-review graph con-
cept, formally present the weighted maximal clique enumer-
ation problem, then introduce an efficient heuristic that
leverages natural limitations in the behaviors of fraudsters.

Co-Review Graphs. Let the co-review graph of an app, see
Fig. 8, be a graph where nodes correspond to user accounts
who reviewed the app, and undirected edges have a weight
that indicates the number of apps reviewed in common by
the edge’s endpoint users. Fig. 16a shows the co-review cli-
que of one of the seed fraud apps (see Section 3.2). The co-
review graph concept naturally identifies user accounts
with significant past review activities.

The Weighted Maximal Clique Enumeration Problem. Let
G ¼ ðV;EÞ be a graph, where V denotes the sets of vertices
of the graph, and E denotes the set of edges. Let w be a
weight function, w : E ! R that assigns a weight to each
edge of G. Given a vertex sub-set U 2 V , we use G½U� to
denote the sub-graph of G induced by U . A vertex sub-set U
is called a clique if any two vertices in U are connected by an
edge in E. We say that U is a maximal cliqueif no other clique
of G contains U . The weighted maximal clique enumeration
problem takes as input a graph G and returns the set of
maximal cliques of G.

Maximal clique enumeration algorithms such as [27], [28]
applied to co-review graphs are not ideal to solve the prob-
lem of identifying sub-sets of an app’s reviewers with signifi-
cant past common reviews. First, fraudsters may not
consistently use (or may even purposefully avoid using) all
their accounts across all fraud jobs that they perform. In addi-
tion, Google Play provides incomplete information (up to
4,000 reviews per app, may also detect and filter fraud). Since
edge information may be incomplete, original cliques may
now also be incomplete. To address this problem, we “relax”
the clique requirement and focus instead of pseudo-cliques:

The Weighted Pseudo-Clique Enumeration Problem. For a
graph G ¼ ðV;EÞ and a threshold value u, we say that a ver-

tex sub-set U (and its induced sub-graph G½U �) is a pseudo-

clique of G if its weighted density r ¼
P

e2E wðeÞ
n
2ð Þ [29] exceeds

u; n ¼ jV j.1 U is a maximal pseudo-clique if in addition, no
other pseudo-clique of G contains U . The weighted pseudo-
clique enumeration problem outputs all the vertex sets of V
whose induced subgraphs areweighted pseudo-cliques ofG.

The Pseudo Clique Finder (PCF) Algorithm. We propose
PCF (Pseudo Clique Finder), an algorithm that exploits the
observation that fraudsters hired to review an app are likely
to post those reviews within relatively short time intervals
(e.g., days). PCF (see Algorithm 1), takes as input the set of
the reviews of an app, organized by days, and a threshold
value u. PCF outputs a set of identified pseudo-cliques with
r � u, that were formed during contiguous time frames. In
Section 5.3 we discuss the choice of u.

Algorithm 1. PCF Algorithm Pseudo-Code

Input: days, an array of daily reviews, and
u, the weighted threshold density

Output: allCliques, set of all detected pseudo-cliques
1. for d :=0 d < days.size(); d++
2. Graph PC := new Graph();
3. bestNearClique(PC, days[d]);
4. c := 1; n := PC.size();
5. for nd := d+1; d < days.size() & c = 1; d++
6. bestNearClique(PC, days[nd]);
7. c := (PC.size() > n); endfor
8. if (PC.size() > 2)
9. allCliques := allCliques.add(PC); fi endfor
10. return
11. function bestNearClique(Graph PC, Set revs)
12. if (PC.size() = 0)
13. for root := 0; root < revs.size(); root++
14. Graph candClique := new Graph ();
15. candClique.addNode (revs[root].getUser());
16. do candNode := getMaxDensityGain(revs);
17. if (density(candClique [{candNode}) � u))
18. candClique.addNode(candNode); fi
19. while (candNode != null);
20. if (candClique.density() > maxRho)
21. maxRho := candClique.density();
22. PC := candClique; fi endfor
23. else if (PC.size() > 0)
24. do candNode := getMaxDensityGain(revs);
25. if (density(candClique [candNode) � u))
26. PC.addNode(candNode); fi
27. while (candNode != null);
28. return

For each day when the app has received a review (line 1),
PCF finds the day’s most promising pseudo-clique (lines 3
and 12� 22): start with each review, then greedily add other
reviews to a candidate pseudo-clique; keep the pseudo cli-
que (of the day) with the highest density. With that “work-
in-progress” pseudo-clique, move on to the next day (line 5):
greedily add other reviewswhile the weighted density of the
new pseudo-clique equals or exceeds u (lines 6 and 23� 27).
When no new nodes have been added to the work-in-prog-
ress pseudo-clique (line 8), we add the pseudo-clique to the
output (line 9), thenmove to the next day (line 1). The greedy
choice (getMaxDensityGain, not depicted in Algorithm 1)

Fig. 8. Example pseudo-cliques and PCF output. Nodes are users and
edge weights denote the number of apps reviewed in common by the
end users. Review timestamps have a 1-day granularity. (a) The entire
co-review graph, detected as pseudo-clique by PCF when u is 6. When u
is 7, PCF detects the subgraphs of (b) the first two days and (c) the last
two days. When u=8, PCF detects only the clique formed by the first day
reviews (the red nodes).

1. r is thus the average weight of the graph’s edges, normalized by
the total number of edges of a perfect clique of size n.

1334 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 29, NO. 6, JUNE 2017

picks the review not yet in the work-in-progress pseudo-
clique, whose writer has written the most apps in common
with reviewers already in the pseudo-clique. Fig. 8 illustrates
the output of PCF for several u values.

If d is the number of days over which A has received
reviews and r is the maximum number of reviews received
in a day, PCF’s complexity is Oðdr2ðrþ dÞÞ.

We note that if multiple fraudsters target an app in the
same day, PCF may detect only the most densely connected
pseudo-clique, corresponding to the most prolific fraudster,
and miss the lesser dense ones.

CoReG Features. CoReG extracts the following features
from the output of PCF (see Table 1) (i) the number of cli-
ques whose density equals or exceeds u, (ii) the maximum,
median and standard deviation of the densities of identified
pseudo-cliques, (iii) the maximum, median and standard
deviation of the node count of identified pseudo-cliques,
normalized by n (the app’s review count), and (iv) the total
number of nodes of the co-review graph that belong to at
least one pseudo-clique, normalized by n.

4.3 Reviewer Feedback (RF) Module

Reviews written by genuine users of malware and fraudu-
lent apps may describe negative experiences. The RF
module exploits this observation through a two step
approach: (i) detect and filter out fraudulent reviews,
then (ii) identify malware and fraud indicative feedback
from the remaining reviews.

Step RF.1: Fraudulent Review Filter. We posit that certain
features can accurately pinpoint genuine and fake reviews.
We propose several such features, see Table 2 for a sum-
mary, defined for a review Rwritten by user U for an app A.

� Reviewer based features. The expertise of U for app A,
defined as the number of reviews U wrote for apps that are
“similar” to A, as listed by Google Play (see Section 2). The
bias of U towards A: the number of reviews written by U for
other apps developed by A’s developer. In addition, we
extract the total money paid by U on apps it has reviewed,
the number of apps that U has liked, and the number of
Google+ followers of U .

� Text based features. We used the NLTK library [30] and
the Naive Bayes classifier, trained on two datasets: (i) 1,041
sentences extracted from randomly selected 350 positive
and 410 negative Google Play reviews, and (ii) 10,663 sen-
tences extracted from 700 positive and 700 negative IMDB

movie reviews [31]. 10-fold cross validation of the Naive
Bayes classifier over these datasets reveals a false negative
rate of 16.1 percent and a false positive rate of 19.65 percent,
for an overall accuracy of 81.74 percent. We ran a binomial
test [32] for a given accuracy of p=0.817 over N=1,041 cases
using the binomial distribution binomialðp;NÞ to assess the
95 percent confidence interval for our result. The deviation
of the binomial distribution is 0.011. Thus, we are 95 percent
confident that the true performance of the classifier is in the
interval (79.55, 83.85).

We used the trained Naive Bayes classifier to determine
the statements of R that encode positive and negative senti-
ments. We then extracted the following features: (i) the per-
centage of statements in R that encode positive and
negative sentiments respectively, and (ii) the rating of R
and its percentile among the reviews written by U .

In Section 5 we evaluate the review classification accu-
racy of several supervised learning algorithms trained on
these features and on the gold standard datasets of fraudu-
lent and genuine reviews introduced in Section 3.2.

Step RF.2: Reviewer Feedback Extraction. We conjecture that
(i) since no app is perfect, a “balanced” review that contains
both app positive and negative sentiments is more likely to
be genuine, and (ii) there should exist a relation between
the review’s dominating sentiment and its rating. Thus,
after filtering out fraudulent reviews, we extract feedback
from the remaining reviews. For this, we have used NLTK
to extract 5,106 verbs, 7,260 nouns and 13,128 adjectives
from the 97,071 reviews we collected from the 613 gold stan-
dard apps (see Section 3.2). We removed non ascii charac-
ters and stop words, then applied lemmatization and
discarded words that appear at most once. We have
attempted to use stemming, extracting the roots of words,
however, it performed poorly. This is due to the fact that
reviews often contain (i) shorthands, e.g., “ads”, “seeya”,
“gotcha”, “inapp”, (ii) misspelled words, e.g., “pathytic”,
“folish”, “gredy”, “dispear” and even (iii) emphasized mis-
spellings, e.g., “hackkked”, “spammmerrr”, “spooooky”.
Thus, we ignored stemming.

We used the resulting words to manually identify lists of
words indicative of malware, fraudulent and benign behav-
iors. Our malware indicator word list contains 31 words
(e.g., risk, hack, corrupt, spam, malware, fake, fraud, black-
list, ads). The fraud indicator word list contains 112 words
(e.g., cheat, hideous, complain, wasted, crash) and the
benign indicator word list contains 105 words.

RF Features. We extract 3 features (see Table 1), denoting
the percentage of genuine reviews that contain malware,
fraud, and benign indicator words respectively. We also
extract the impact of detected fraudulent reviews on the
overall rating of the app: the absolute difference between
the app’s average rating and its average rating when ignor-
ing all the fraudulent reviews.

4.4 Inter-Review Relation (IRR) Module

This module leverages temporal relations between reviews,
as well as relations between the review, rating and install
counts of apps, to identify suspicious behaviors.

Temporal Relations. In order to compensate for a negative
review, an attacker needs to post a significant number of
positive reviews. Specifically,

TABLE 2
FeaturesUsed toClassify ReviewRWritten byUserU for AppA

Notation Definition

rR The rating of R
LðRÞ The length of R
posðRÞ Percentage of positive statements in R
negðRÞ Percentage of negative statements in R

nrðUÞ The number of reviews written by U
pðrRÞ Percentile of rR among all reviews of U
ExpUðAÞ The expertise of U for app A
BUðAÞ The bias of U for A
PaidðUÞ The money spent by U to buy apps
RatedðUÞ Number of apps rated by U
plusOneðUÞ Number of apps +1’d by U
n:flwrsðUÞ Number of followers of U in Google+

RAHMAN ET AL.: SEARCH RANK FRAUD AND MALWARE DETECTION IN GOOGLE PLAY 1335

Claim 1. Let RA denote the average rating of an app A just
before receiving a 1 star review. In order to compensate
for the 1 star review, an attacker needs to post at least
RA�1
5�RA

positive reviews.

Proof. Let s be the sum of all the k reviews received by a
before time T . Then, RA ¼ s

k. Let qr be the number of
fraudulent reviews received by A. To compensate for the
1 star review posted at time T , qr is minimized when all
those reviews are 5 star. We then have that:
RA ¼ s

k ¼ sþ1þ5qr
kþ1þqr

. The numerator of the last fraction
denotes the sum of all the ratings received by A after time
T and the denominator is the total number of reviews.
Rewriting the last equality, we obtain that
qr ¼ s�k

5k�s
¼ RA�1

5�RA
. The last equality follows by dividing

both the numerator and denominator by k. tu
Fig. 13 plots the lower bound on the number of fake

reviews that need to be posted to cancel a 1-star review, ver-
sus the app’s current rating. It shows that the number of
reviews needed to boost the rating of an app is not constant.
Instead, as a review campaign boosts the rating of the subject
app, the number of fake reviews needed to continue the pro-
cess, also increases. For instance, a 4 star app needs to receive
3, 5-star reviews to compensate for a single 1 star review,
while a 4.2 star app needs to receive 4 such reviews. Thus,
adversaries who want to increase the rating of an app, i.e.,
cancel out previously received negative reviews, will need to
post an increasing, significant number of positive reviews.

Such a “compensatory” behavior is likely to lead to sus-
piciously high numbers of positive reviews. We detect such
behaviors by identifying outliers in the number of daily pos-
itive reviews received by an app. Fig. 9 shows the timelines
and suspicious spikes of positive reviews for 2 apps from
the fraudulent app dataset (see Section 3.2). We identify
days with spikes of positive reviews as those whose number
of positive reviews exceeds the upper outer fence of the box-
and-whisker plot built over the app’s numbers of daily posi-
tive reviews.

Reviews, Ratings and Install Counts. We used the Pearson’s
x2 test to investigate relationships between the install count
and the rating count, as well as between the install count

and the average app rating of the 87 K new apps, at the end
of the collection interval. We grouped the rating count in
buckets of the same size as Google Play’s install count buck-
ets. Fig. 10 shows the mosaic plot of the relationships
between rating and install counts. p=0.0008924, thus we con-
clude dependence between the rating and install counts.
The standardized residuals identify the cells (rectangles)
that contribute the most to the x2 test. The most significant
rating:install ratio is 1:100.

In addition, Fig. 11 shows the mosaic plot of the app
install count versus the average app rating. Rectangular
cells correspond to apps that have a certain install count
range (x axis) and average rating range (y axis). It shows
that few popular apps, i.e., with more than 1,000 installs,
have below 3 stars, or above 4.5 stars. We conjecture that
fraudster efforts to alter the search rank of an app will not
be able to preserve a natural balance of the features that
impact it (e.g., the app’s review, rating, and install counts),

Fig. 9. Timelines of positive reviews for 2 apps from the fraudulent app
dataset. The first app has multiple spikes while the second one has only
one significant spike.

Fig. 10. Mosaic plot of install versus rating count relations of the 87K
apps. Larger cells (rectangles) signify that more apps have the corre-
sponding rating and install count range; dotted lines mean no apps in a
certain install/rating category. The standardized residuals identify the
cells that contribute the most to the x2 test. The most significant rating:
install ratio is 1:100.

Fig. 11. Mosaic plot showing relationships between the install count and
the average app rating, over the 87K apps. A cell contains the apps that
have a certain install count interval (x axis) and rating interval (y axis).
Larger cells contain more apps. We observe a relationship between
install count and rating: apps that receive more installs also tend to have
higher average ratings (i.e., above 3 stars). This may be due to app pop-
ularity relationship to quality which may be further positively correlated
with app rating.

1336 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 29, NO. 6, JUNE 2017

which will easily be learned and detected by supervised
learning algorithms.

IRR Features. We extract temporal features (see Table 1):
the number of days with detected spikes and the maximum
amplitude of a spike. We also extract (i) the ratio of installs
to ratings as two features, I1=Rt1 and I2=Rt2 and (ii) the
ratio of installs to reviews, as I1=Rv1 and I2=Rv2. ðI1; I2�
denotes the install count interval of an app, ðRt1; Rt2� its rat-
ing interval and ðRv1; Rv2� its (genuine) review interval.

4.5 Jekyll-Hyde App Detection (JH) Module

Fig. 12a shows the distribution of the total number of permis-
sions requested bymalware, fraudulent and legitimate apps.
Surprisingly, not only malware and fraudulent apps but also
legitimate apps request large numbers of permissions.

In addition, Android’s API level 22 labels 47 permissions
as “dangerous”. Fig. 12b compares the distributions of the
number of dangerous permissions requested by the gold
standard malware, fraudulent and benign apps. The most
popular dangerous permissions among these apps are
“modify or delete the contents of the USB storage”, “read
phone status and identity”, “find accounts on the device”,
and “access precise location”. Only 8 percent of the legiti-
mate apps request more than 5 dangerous permissions,
while 16.5 percent of the malware apps and 17 percent of
the fraudulent apps request more than 5 permissions. Per-
haps surprisingly, most legitimate (69 percent), malware
(76 percent) and fraudulent apps (61 percent) request
between 1 and 5 dangerous permissions.

After a recent Google Play policy change [33], Google
Play organizes app permissions into groups of related per-
missions. Apps can request a group of permissions and
gain implicit access also to dangerous permissions. Upon
manual inspection of several apps, we identified a new type
of malicious intent possibly perpetrated by deceptive app
developers: apps that seek to attract users with minimal per-
missions, but later request dangerous permissions. The user
may be unwilling to uninstall the app “just” to reject a few
new permissions. We call these Jekyll-Hyde apps. Fig. 12c
shows the dangerous permissions added during different
version updates of one gold standard malware app.

JH Features. We extract the following features (see Table 1),
(i) the total number of permissions requested by the app, (ii)
its number of dangerous permissions, (iii) the app’s number
of dangerous permission ramps, and (iv) its total number of
dangerous permissions added over all the ramps.

5 EVALUATION

5.1 Experiment Setup

We have implemented FairPlay using Python to extract data
from parsed pages and compute the features, and the R tool
to classify reviews and apps. We have set the threshold den-
sity value u to 3, to detect even the smaller pseudo cliques.

We have used the Weka data mining suite [34] to per-
form the experiments, with default settings. We experi-
mented with multiple supervised learning algorithms. Due
to space constraints, we report results for the best perform-
ers: MultiLayer Perceptron (MLP) [35], Decision Trees (DT)
(C4.5) and Random Forest (RF) [36], using 10-fold cross-
validation [37]. For the backpropagation algorithm of the
MLP classifier, we set the learning rate to 0.3 and the
momentum rate to 0.2. We used MySQL to store collected
data and features. We use the term “positive” to denote a
fraudulent review, fraudulent or malware app; FPR means
false positive rate. Similarly, “negative” denotes a genuine
review or benign app; FNR means false negative rate.

We use the Receiver Operating Characteristic (ROC)
curve to visually display the trade-off between the FPR and
the FNR. TPR is the true positive rate. The Equal Error Rate
(EER) is the rate at which both positive and negative errors
are equal. A lower EER denotes a more accurate solution.

5.2 Review Classification

To evaluate the accuracy of FairPlay’s fraudulent review
detection component (RF module), we used the gold
standard datasets of fraudulent and genuine reviews of

Fig. 12. (a) Distribution of total number of permissions requested by malware, fraudulent and legitimate apps. (b) Distribution of the number of
“dangerous” permissions requested by malware, fraudulent and benign apps. (c) Dangerous permission ramp during version updates for a sample
app “com.battery.plusfree”. Originally the app requested no dangerous permissions.

Fig. 13. Lower bound on the number of fake reviews that need to be
posted by an adversary to cancel a 1-star review, versus the app’s
current rating (shown with 0.1-star granularity). At 4 stars, the adversary
needs to post 3 5-star reviews to cancel a 1-star review, while at
4.2 stars, 4 5-star reviews are needed.

RAHMAN ET AL.: SEARCH RANK FRAUD AND MALWARE DETECTION IN GOOGLE PLAY 1337

Section 3.2. We used GPCrawler to collect the data of the
writers of these reviews, including the 203 reviewers of the
406 fraudulent reviews (21,972 reviews for 2,284 apps) and
the 315 reviewers of the genuine reviews (9,468 reviews for
7,116 apps). We observe that the users who post genuine
reviews write fewer reviews in total than those who post
fraudulent reviews; however, overall, those users review
more apps in total. We have also collected information
about each of these collected apps, e.g., the identifiers of the
app developer.

Table 3 shows the results of the 10-fold cross validation
of algorithms classifying reviews as genuine or fraudulent
(Random Forest, Decision Tree and MLP). Fig. 14 shows the
ROC plots of these algorithms. To minimize wrongful accu-
sations, we seek to minimize the FPR [38]. MLP simulta-
neously achieves the highest accuracy of 96.26 percent and
the lowest FPR of 1.47 percent (at 6.67 percent FNR). The
EER of MLP is 3.6 percent and its area under the curve,
AUC, is 0.98. Thus, in the following experiments, we use
MLP to filter out fraudulent reviews in the RF.1 step.

5.3 App Classification

To evaluate FairPlay, we have collected all the 97,071
reviews of the 613 gold standard malware, fraudulent and
benign apps, written by 75,949 users, as well as the 890,139
apps rated by these users.

In the following, we evaluate the ability of various super-
vised learning algorithms to correctly classify apps as either
benign, fraudulent or malware. Specifically, in the first
experiment we train only on fraudulent and benign app
data, and test the ability to accurately classify an app as

either fraudulent or benign. In the second experiment, we
train and test only on malware and benign apps. In the third
experiment, we train a classifier on fraudulent and benign
apps, then test its accuracy to classify apps as either mal-
ware or benign. Finally, we study the most impactful
features when classifying fraudulent versus benign and
malware versus benign apps.

We seek to identify the algorithms that achieve low FPR
values, while having a reasonable FNR [38], [39]. The reason
for this is that incorrectly labeling a benign app (e.g., Face-
book’s client) as fraudulent or malware can have a disas-
trous effect.

Fraud Detection Accuracy. Table 4 shows 10-fold cross val-
idation results of FairPlay on the gold standard fraudulent
and benign apps (see Section 3.2). All classifiers achieve an
accuracy of around 97 percent. Random Forest is the best,
having the highest accuracy of 97.74 percent and the lowest
FPR of 1.01 percent. Its EER is 2.5 percent and the area
under the ROC curve (AUC) is 0.993 (see Fig. 15).

Fig. 16a shows the co-review subgraph for one of the
seed fraud apps identified by FairPlay’s PCF. The 37
accounts that reviewed the app form a suspicious tightly
connected clique: any two of those accounts have reviewed
at least 115 and at most 164 apps in common.

Malware Detection Accuracy. We have used Sarma
et al. [16]’s solution as a baseline to evaluate the ability of
FairPlay to accurately detect malware. We computed Sarma
et al. [16]’s RCP and RPCP indicators (see Section 2.1) using
the longitudinal app dataset.We used the SVMbased variant
of Sarma et al. [16], which performs best. Table 4 shows 10-
fold cross validation results over the malware and benign
gold standard sets. FairPlay significantly outperforms Sarma

TABLE 3
Review Classification Results (10-Fold Cross-Validation)

of Gold Standard Fraudulent (Positive) and
Genuine (Negative) Reviews

Strategy FPR% FNR% Accuracy%

DT (Decision Tree) 2.46 6.03 95.98
MLP (Multi-layer Perceptron) 1.47 6.67 96.26
RF (Random Forest) 2.46 5.40 96.26

MLP achieves the lowest false positive rate (FPR) of 1.47%.

Fig. 14. ROC plot of 3 classifiers: Decision Tree, Random Forest, and
Multilayer Perceptron (MLP). for review classification. RF andMLP are tied
for best accuracy, of 96.26 percent. TheEER ofMLP is as low as 0.036.

TABLE 4
FairPlay Classification Results (10-Fold Cross Validation)
of Gold Standard Fraudulent (Positive) and Benign Apps

Strategy FPR% FNR% Accuracy%

FairPlay/DT 3.01 3.01 96.98
FairPlay/MLP 1.51 3.01 97.74
FairPlay/RF 1.01 3.52 97.74

RF has lowest FPR, thus desirable [38].

Fig. 15. ROC plot of 3 classifiers: Decision Tree, MLP, and Bagging for
app classification (legitimate versus fraudulent). Decision Tree has the
highest accuracy, of 98.99 percent. The EER of MLP is as low as 0.01.

1338 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 29, NO. 6, JUNE 2017

et al. [16]’s solution, with an accuracy that consistently
exceeds 95 percent. We note that the performance of Sarma
et al.’s solution is lower than the one reported in [16]. This
inconsistency may stem from the small number of malware
apps that were used both in [16] (121 apps) and in this paper
(212 apps).

For FairPlay, Random Forest has the smallest FPR of
1.51 percent and the highest accuracy of 96.11 percent. It also
achieves an EER of 4 percent and has an AUC of 0.986. This
is surprising: most FairPlay features are meant to identify
search rank fraud, yet they also accurately identifymalware.

IsMalware Involved in Fraud?We conjectured that the above
result is due in part tomalware apps being involved in search
rank fraud. To verify this, we have trained FairPlay on the
gold standard benign and fraudulent app datasets, then we
have tested it on the gold standard malware dataset. MLP is
themost conservative algorithm, discovering 60.85 percent of
malware as fraud participants. Random Forest discovers
72.15 percent, and Decision Tree flags 75.94 percent of the
malware as fraudulent. This result confirms our conjecture
and shows that search rank fraud detection can be an impor-
tant addition tomobilemalware detection efforts.

Top-most Impactful Features. We further seek to compare
the efficacy of FairPlay’s features in detections fraudulent
apps and malware. Table 6 shows the most impactful fea-
tures of FairPlay when using the Decision Tree algorithm to
classify fraudulent versus benign and malware versus
benign apps. It shows that several features are common :
the standard deviation, median and maximum over the
sizes of identified pseudo-cliques (CSSD, CSmed, CSmax), the
number of reviews with fraud indicator words (fraudW).

Surprisingly, even the number of reviews with malware
indicator words (malW) has an impact in identifying fraud-
ulent apps, yet, as expected, it has a higher rank when iden-
tifying malware apps.

In addition, as expected, features such as the percentage
of nodes involved in a pseudo-clique (inCliqueCount), the
number of days with spikes (spikeCount) and the maximum
density of an identified pseudo-clique (rmax) are more rele-
vant to differentiate fraudulent from benign apps. The num-
ber of pseudo-cliques with density larger than 3 (nCliques)
the ratio of installs to reviews (I1=Rv1) and the number of
dangerous permissions (dangerCount) are more effective to
differentiate malware from benign apps.

More surprising are the features that do not appear in the
top, for either classifier. Most notably, the Jekyll-Hyde fea-
tures that measure the ramps in the number of dangerous
permissions. One explanation is that the 212 malware apps
in our gold standard dataset do not have sufficient danger-
ous permission ramps. Also, we note that our conjecture
that fraudster efforts to alter the search rank of an app will
not be able to preserve a natural balance of the features that
impact it (see IRR module) is only partially validated: solely
the I1/Rv1 feature plays a part in differentiating malware
from benign apps.

Furthermore, we have zoomed in into the distributions of
the sizes and densities of the largest pseudo-cliques, for the
gold standard fraudulent and malware apps. Fig. 17 shows

Fig. 16. (a) Clique flagged by PCF for “Tiempo - Clima gratis”, one of the 201 seed fraud apps (see Section 3.2). The clique contains 37 accounts
(names hidden for privacy) that reviewed the app. The edge weights are suspiciously high: any two of the 37 accounts reviewed at least 115 apps and
up to 164 apps in common! (b & c) Statistics over the 372 fraudulent apps out of 1,600 investigated: (b) Distribution of per app number of discovered
pseudo-cliques. 93.3 percent of the 372 apps have at least 1 pseudo-clique of u � 3 (c) Distribution of percentage of app reviewers (nodes) that belong
to the largest pseudo-clique and to any clique. Eight percent of the 372 apps havemore than 90 percent of their reviewers involved in a clique!

TABLE 5
FairPlay Classification Results (10-Fold Cross Validation)
of Gold Standard Malware (Positive) and Benign Apps,

Significantly Outperform Sarma et al. [16]

Strategy FPR% FNR% Accuracy%

FairPlay/DT 4.02 4.25 95.86
FairPlay/MLP 4.52 4.72 95.37
FairPlay/RF 1.51 6.13 96.11

Sarma et al. [16]/SVM 65.32 24.47 55.23

FairPlay’s RF achieves 96.11% accuracy at 1.51% FPR.

TABLE 6
Top Eight Most Important Features When Classifying
Fraudulent versus Benign Apps (Center Column) and
Malware versus Benign Apps (Rightmost Column)

Rank Fraudulent versus Benign Malware versus Benign

1 CSSD nCliques
2 inCliqueCount CSSD

3 spikeCount CSmed

4 CSmax malW
5 rmax I1/Rv1
6 CSmed CSmax

7 fraudW fraudW
8 malW dangerCount

Notations are described in Table 1. While some features are common, some are
more efficient in identifying fraudulent apps thanmalware apps, and vice versa.

RAHMAN ET AL.: SEARCH RANK FRAUD AND MALWARE DETECTION IN GOOGLE PLAY 1339

scatterplots over the gold standard fraudulent and malware
apps, of the sizes and densities of their largest pseudo-
cliques, as detected by FairPlay. Fig. 17a shows that fraudu-
lent apps tend to have very large pseudo-clique and Fig. 17c
shows that malware apps have significantly smaller
pseudo-cliques. We observe however that malware apps
have fewer reviews, and some malware apps have pseudo-
cliques that contain almost all their nodes. Since the maxi-
mum, median and standard deviation of the pseudo-clique
sizes are computed over values normalized by the app’s
number of reviews, they are impactful in differentiating
malware from benign apps.

Fig. 17b shows that the largest pseudo-cliques of the
larger fraudulent apps tend to have smaller densities.
Fig. 17d shows a similar but worse trend for malware apps,
where with a few exceptions, the largest pseudo-cliques of
the malware apps have very small densities.

5.4 FairPlay on the Field

We have also evaluated FairPlay on other, non “gold
standard” apps. For this, we have first selected 8 app cat-
egories: Arcade, Entertainment, Photography, Simulation,
Racing, Sports, Lifestyle, Casual. We have then selected
the 6,300 apps from the longitudinal dataset of the 87K
apps, that belong to one of these 8 categories, and that
have more than 10 reviews. From these 6,300 apps, we
randomly selected 200 apps per category, for a total of
1,600 apps. We have then collected the data of all their
50,643 reviewers (not unique) including the ids of all the
166,407 apps they reviewed.

We trained FairPlay with Random Forest (best perform-
ing on previous experiments) on all the gold standard
benign and fraudulent apps. We have then run FairPlay on

the 1,600 apps, and identified 372 apps (23 percent) as
fraudulent. The Racing and Arcade categories have the
highest fraud densities: 34 percent and 36 percent of their
apps were flagged as fraudulent.

Intuition. We now focus on some of the topmost impactful
FairPlay features to offer an intuition for the surprisingly
high fraud percentage (23 percent of 1,600 apps). Fig. 16b
shows that 93.3 percent of the 372 apps have at least 1
pseudo-clique of u � 3, nearly 71 percent have at least 3
pseudo-cliques, and a single app can have up to 23 pseudo-
cliques. Fig. 16c shows that the pseudo-cliques are large and
encompass many of the reviews of the apps: 55 percent of the
372 apps have at least 33 percent of their reviewers involved
in a pseudo-clique, while nearly 51 percent of the apps have a
single pseudo-clique containing 33 percent of their reviewers.

Fig. 18 shows the scatterplots of the number of nodes and
densities of the largest clique in each of the 372 apps. While

Fig. 17. Scatterplots for the gold standard fraudulent and malware apps. (a) Each red square represents a fraudulent app, whose y axis value is its
number of nodes (reviews) in the largest pseudo-clique identified, and whose x axis value is its number of nodes. (b) For each fraudulent app, the
density of its largest pseudo-clique versus its number of nodes. (c) For each malware app, the size of its largest pseudo-clique versus its number of
nodes. (d) For each malware app, the density of its largest pseudo-clique versus its number of nodes. Fraudulent apps tend to have more reviews.
While some malware apps have relatively large (but loosely connected) pseudo-cliques, their size and density is significantly smaller than those of
fraudulent apps.

Fig. 18. Scatterplots of the 372 fraudulent apps out of 1,600 investigated, showing, for each app, (a) the number of nodes (reviews) in the largest cli-
que identified versus the app’s number of nodes and (b) the density of the largest clique versus the app’s number of nodes. While apps with more
nodes also tend to have larger cliques, those cliques tend to have lower densities.

Fig. 19. Distribution of the number of malware and fraud indicator words
(see Step RF.2) in the reviews of the 372 identified fraudulent apps (out
of 1,600 apps). Around 75 percent of these apps have at least 20 fraud
indicator words in their reviews.

1340 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 29, NO. 6, JUNE 2017

intuitively apps with more reviews tend to have larger
pseudo-cliques (Fig. 18a), surprisingly, the densities of such
pseudo-cliques are small (Fig. 18b).

Fig. 19 shows the distribution of the number of malware
and fraud indicator words (see Step RF.2) in the reviews of
the identified 372 fraudulent apps. It shows that around
75 percent of the 372 fraudulent apps have at least 20 fraud
indicator words in their reviews.

5.5 Coercive Review Campaigns

Upon close inspection of apps flagged as fraudulent by Fair-
Play, we detected apps perpetrating a new attack type:
harass the user to either (i) write a positive review for
the app, or (ii) install and write a positive review for
other apps (often of the same developer). We call these
behaviors coercive review campaigns and the resulting
reviews, as coerced reviews. Example coerced reviews
include, “I only rated it because i didn’t want it to pop
up while i am playing”, or “Could not even play one
level before i had to rate it [...] they actually are telling
me to rate the app 5 stars”.

In order to find evidence of systematic coercive review
campaigns, we have parsed the 2.9 million reviews of our
dataset to identify those whose text contains one of the root
words ½“make”, “ask”, “force”� and “rate”. Upon manual
inspection of the results, we have found 1,024 coerced
reviews. The reviews reveal that apps involved in coercive
review campaigns either have bugs (e.g., they ask the user
to rate 5 stars even after the user has rated them), or reward
the user by removing ads, providing more features, unlock-
ing the next game level, boosting the user’s game level or
awarding game points.

The 1,024 coerced reviews were posted for 193 apps.
Fig. 20 shows the distribution of the number of coerced
reviews per app. While most of the 193 apps have received
less than 20 coerced reviews, 5 apps have each received
more than 40 such reviews.

We have observed several duplicates among the coerced
reviews. We identify two possible explanations. First, as we
previously mentioned, some apps do not keep track of the
user having reviewed them, thus repeatedly coerce subse-
quent reviews from the same user. A second explanation is
that seemingly coerced reviews, can also be posted as part
of a negative search rank fraud campaign. However, both
scenarios describe apps likely to have been subjected to
fraudulent behaviors.

6 CONCLUSIONS

We have introduced FairPlay, a system to detect both fraud-
ulent and malware Google Play apps. Our experiments on a
newly contributed longitudinal app dataset, have shown
that a high percentage of malware is involved in search
rank fraud; both are accurately identified by FairPlay. In
addition, we showed FairPlay’s ability to discover hundreds
of apps that evade Google Play’s detection technology,
including a new type of coercive fraud attack.

ACKNOWLEDGMENTS

This research was supported in part by NSF grants 1527153,
1526254, and 1450619, and AROW911NF-13-1-0142.

REFERENCES

[1] Google Play. [Online]. Available: https://play.google.com/
[2] E. Siegel, “Fake reviews in Google Play and Apple App Store,”

Appentive, Seattle, WA, USA, 2014.
[3] Z. Miners. (2014, Feb. 19). “Report: Malware-infected Android

apps spike in the Google Play store,” PC World. Available: http://
www.pcworld.com/article/2099421/report-malwareinfected-
android-apps-spike-in-the-google-play-store.html

[4] S. Mlot. (2014, Apr. 8). “Top Android App a Scam, Pulled From
Google Play,” PCMag. Available: http://www.pcmag.com/
article2/0,2817,2456165,00.asp

[5] D. Roberts. (2015, Jul. 8). “How to spot fake apps on the Google
Play store,” Fortune. Available: http://fortune.com/2015/07/08/
google-play-fake-app/

[6] A. Greenberg (2012, May 23). “Researchers say they snuck
malware app past Google’s ‘Bouncer’ Android market scanner,”
Forbes Security, [Online]. Available: http://www.forbes.com/
sites/andygreenberg/2012/05/23/researchers-say-they-snuck-
malware-app-past-googles-bouncer-android-market-scanner/
#52c8818d1041

[7] Freelancer. [Online]. Available: http://www.freelancer.com
[8] Fiverr. [Online]. Available: https://www.fiverr.com/
[9] BestAppPromotion. [Online]. Available: www.bestreviewapp.

com/
[10] G. Wang, et al., “Serf and turf: Crowdturfing for fun and profit,”

in Proc. ACM WWW, 2012. [Online]. Available: http://doi.acm.
org/10.1145/2187836.2187928

[11] J. Oberheide and C. Miller, “Dissecting the Android Bouncer,”
presented at the SummerCon2012, New York, NY, USA, 2012.

[12] VirusTotal - free online virus, Malware and URL scanner.
[Online]. Available: https://www.virustotal.com/, Last accessed
on: May 2015.

[13] I. Burguera, U. Zurutuza, and S. Nadjm-Tehrani , “Crowdroid:
Behavior-based Malware detection system for Android,” in Proc.
ACM SPSM, 2011, pp. 15–26.

[14] A. Shabtai, U. Kanonov, Y. Elovici, C. Glezer, and Y. Weiss,
“Andromaly: A behavioral malware detection framework for
Androiddevices,” Intell. Inform. Syst., vol. 38, no. 1, pp. 161–190, 2012.

[15] M. Grace, Y. Zhou, Q. Zhang, S. Zou, and X. Jiang, “RiskRanker:
Scalable and accurate zero-day Android malware detection,” in
Proc. ACMMobiSys, 2012, pp. 281–294.

[16] B. P. Sarma, N. Li, C. Gates, R. Potharaju, C. Nita-Rotaru, and
I. Molloy, “Android Permissions: A Perspective Combining Risks
and Benefits,” in Proc. 17th ACM Symp. Access Control Models Tech-
nol., 2012, pp. 13–22.

[17] H. Peng, et al., “Using probabilistic generative models for ranking
risks of Android Apps,” in Proc. ACM Conf. Comput. Commun.
Secur., 2012, pp. 241–252.

[18] S. Yerima, S. Sezer, and I. Muttik, “Android Malware detection
using parallel machine learning classifiers,” in Proc. NGMAST,
Sep. 2014, pp. 37–42.

[19] Y. Zhou and X. Jiang, “Dissecting Android malware: Characteri-
zation and evolution,” in Proc. IEEE Symp. Secur. Privacy, 2012,
pp. 95–109.

[20] Fraud detection in social networks, [Online]. Available: https://
users.cs.fiu.edu/ carbunar/caspr.lab/socialfraud.html

[21] Google I/O 2013 - getting discovered on Google Play, 2013.
[Online]. Available: www.youtube.com/watch?v=5Od2SuL2igA

Fig. 20. Distribution of the number of coerced reviews received by the
193 coercive apps we uncovered. 5 apps have each received more than
40 reviews indicative of rating coercion, with one app having close to 80
such reviews!

RAHMAN ET AL.: SEARCH RANK FRAUD AND MALWARE DETECTION IN GOOGLE PLAY 1341

[22] J. Sahs and L. Khan, “A machine learning approach to Android
malware detection,” in Proc. Eur. Intell. Secur. Inf. Conf., 2012,
pp. 141–147.

[23] B. Sanz, I. Santos, C. Laorden, X. Ugarte-Pedrero, P. G. Bringas,
and G. �Alvarez, “Puma: Permission usage to detect malware
in android,” in Proc. Int. Joint Conf. CISIS12-ICEUTE’ 12-SOCO’
Special Sessions, 2013, pp. 289–298.

[24] J. Ye and L. Akoglu, “Discovering opinion spammer groups by
network footprints,” in Machine Learning and Knowledge Discovery
in Databases. Berlin, Germany: Springer, 2015, pp. 267–282.

[25] L. Akoglu, R. Chandy, and C. Faloutsos, “Opinion Fraud Detec-
tion in Online Reviews by Network Effects,” in Proc. 7th Int. AAAI
Conf. Weblogs Soc. Media, 2013, pp. 2–11.

[26] Android market API, 2011. [Online]. Available: https://code.
google.com/p/android-market-api/

[27] E. Tomita, A. Tanaka, and H. Takahashi, “The worst-case time
complexity for generating all maximal cliques and computa-
tional experiments,” Theory. Comput. Sci., vol. 363, no. 1,
pp. 28–42, Oct. 2006. [Online]. Available: http://dx.doi.org/
10.1016/j.tcs.2006.06.015

[28] K. Makino and T. Uno, “New algorithms for enumerating all max-
imal cliques,” in Proc. 9th Scandinavian Workshop Algorithm, 2004,
pp. 260–272.

[29] T. Uno, “An efficient algorithm for enumerating pseudo cliques,”
in Proc. ISAAC, 2007. [Online]. Available: http://dl.acm.org/
citation.cfm?id=1781574.1781621

[30] S. Bird, E. Klein, and E. Loper, Natural Language Processing with
Python. Sebastopol, CA, USA: O’Reilly, 2009.

[31] B. Pang, L. Lee, and S. Vaithyanathan, “Thumbs Up? sentiment
classification using machine learning techniques,” in Proc. ACL-02
Conf. Empirical Methods Natural Lang. Process., 2002, pp. 76–86.

[32] J. H. McDonald, Handbook of Biological Statistics, 2nd ed. Baltimore,
MD, USA: Sparky House Publishing, 2009. [Online]. Available:
http://udel.edu/�mcdonald/statintro.html

[33] New Google Play Store greatly simplifies permissions, 2014.
[Online]. Available: http://www.androidcentral.com/new-
google-play-store-4820-greatly-simpli

[34] Weka. [Online]. Available: http://www.cs.waikato.ac.nz/ml/
weka/

[35] S. I. Gallant, “Perceptron-based learning algorithms,” Trans. Neur.
Netw., vol. 1, no. 2, pp. 179–191, Jun. 1990.

[36] L. Breiman, “Random Forests,” Mach. Learning, vol. 45, pp. 5–32,
2001.

[37] R. Kohavi, “A study of cross-validation and bootstrap for accu-
racy estimation and model selection,” in Proc. 14th Int. Joint Conf.
Artif. Intell., 1995, pp. 1137–1143.

[38] D.H. Chau, C.Nachenberg, J.Wilhelm,A.Wright, andC. Faloutsos,
“Polonium: Tera-scale graph mining and inference for malware
detection,” in Proc. SIAM Int. Conf. DataMining, 2011, Art. no. 12.

[39] A. Tamersoy, K. Roundy, and D. H. Chau, “Guilt by association:
Large scale malware detection by mining file-relation graphs,” in
Proc. 20th ACM SIGKDD Int. Conf. Knowl. Discovery Data Mining,
2014, pp. 1524–1533. [Online]. Available: http://doi.acm.org/
10.1145/2623330.2623342

Mahmudur Rahman received the PhD degree in
computer science from Florida International Uni-
versity. He is now a security architect in theWatson
Security team at IBM. His current work focuses on
the design of business-driven cognitive solutions
that meet security requirements related to function,
protection, assurance, riskmanagement, and com-
pliance. His research interests include security and
privacy with applications in online and geosocial
networks, wireless networks, distributed computing
systems, andmobile applications.

Mizanur Rahman is working toward the PhD
degree at Florida International University. He
has previously held various positions at KAZ
Software, iAppDragon, and Prolog, Inc. His
research interest include internet data privacy,
fraud detection in social network, and user
experience analysis.

Bogdan Carbunar received the PhD degree in
computer science from Purdue University. He is
an assistant professor in SCIS at FIU. Previously,
he held various researcher positions within the
Applied Research Center at Motorola. His
research interests include distributed systems,
security, and applied cryptography.

Duen Horng Chau received the master’s degree
in human-computer interaction and the PhD
degree in machine learning. He is an assistant
professor at Georgia Tech’s School of Computa-
tional Science and Engineering, and an associate
director of the MS Analytics program. His PhD
thesis won Carnegie Mellon’s Computer Science
Dissertation Award, Honorable Mention. He
received faculty awards from Google, Yahoo,
and LexisNexis. He also received the Raytheon
Faculty Fellowship, Edenfield Faculty Fellowship,

and the Outstanding Junior Faculty Award. He is the only two-time
Symantec fellow and an award-winning designer.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

1342 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 29, NO. 6, JUNE 2017

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

