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Fig. 1. ACTIVIS integrates several coordinated views to support exploration of complex deep neural network models, at both instance-
and subset-level. 1. Our user Susan starts exploring the model architecture, through its computation graph overview (at A). Selecting a
data node (in yellow) displays its neuron activations (at B). 2. The neuron activation matrix view shows the activations for instances
and instance subsets; the projected view displays the 2-D projection of instance activations. 3. From the instance selection panel (at
C), she explores individual instances and their classification results. 4. Adding instances to the matrix view enables comparison of
activation patterns across instances, subsets, and classes, revealing causes for misclassification.

Abstract— While deep learning models have achieved state-of-the-art accuracies for many prediction tasks, understanding these
models remains a challenge. Despite the recent interest in developing visual tools to help users interpret deep learning models, the
complexity and wide variety of models deployed in industry, and the large-scale datasets that they used, pose unique design challenges
that are inadequately addressed by existing work. Through participatory design sessions with over 15 researchers and engineers
at Facebook, we have developed, deployed, and iteratively improved ACTIVIS, an interactive visualization system for interpreting
large-scale deep learning models and results. By tightly integrating multiple coordinated views, such as a computation graph overview
of the model architecture, and a neuron activation view for pattern discovery and comparison, users can explore complex deep neural
network models at both the instance- and subset-level. ACTIVIS has been deployed on Facebook’s machine learning platform. We
present case studies with Facebook researchers and engineers, and usage scenarios of how ACTIVIS may work with different models.

Index Terms—Visual analytics, deep learning, machine learning, information visualization

1 INTRODUCTION

Deep learning has led to major breakthroughs in various domains, such
as computer vision, natural language processing, and healthcare. Many
technology companies, like Facebook, have been increasingly adopting
deep learning models for their products [1, 2, 11]. While powerful deep
neural network models have significantly improved prediction accuracy,
understanding these models remains a challenge. Deep learning models
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are more difficult to interpret than most existing machine learning
models, because they capture nonlinear hidden structures of data using
a huge number of parameters. Therefore, in practice, people often use
them as “black boxes”, which could be detrimental because when the
models do not perform satisfactorily, users would not understand the
causes or know how to fix them [23, 33].

Despite the recent increasing interest in developing visual tools to
help users interpret deep learning models [10,26,35,38], the complexity
and wide variety of models deployed in industry, and the large-scale
datasets that they use, pose unique challenges that are inadequately ad-
dressed by existing work. For example, deep learning tasks in industry
often involve different types of data, including text and numerical data;
however most existing visualization research targets image datasets [38].
Furthermore, in designing interpretation tools for real-world use and
deployment at technology companies, it is a high priority that the tools
be flexible and generalizable to the wide variety of models and datasets
that the companies use for their many products and services. These
observations motivate us to design and develop a visualization tool for

interpreting industry-scale deep neural network models, one that can
work with a wide range of models, and can be readily deployed on
Facebook’s machine learning platform.

Through participatory design with researchers, data scientists, and
engineers at Facebook, we have identified common analysis strategies
that they use to interpret machine learning models. Specifically, we
learned that both instance- and subset-based exploration approaches
are common and effective. Instance-based exploration (e.g., how indi-
vidual instances contribute to a model’s accuracy) have demonstrated
success in a number of machine learning tasks [3,23,29]. As individual
instances are familiar to users, exploring by instances accelerates model
understanding. Another effective strategy is to leverage input features
or instance subsets specified by users [21, 23]. Slicing results by fea-
tures helps reveal relationships between data attributes and machine
learning algorithms’ outputs [17, 28, 29]. Subset-based exploration is
especially beneficial when dealing with huge datasets in industry, which
may consist of millions or billions of data points. Interpreting model
results at a higher, more abstract level helps drive down computation
time, and help user develop general sense about the models.

Our tool, called ACTIVIS, aims to support both interpretation strate-
gies for visualization and comparison of multiple instances and subsets.
ACTIVIS is an interactive visualization system for deep neural network
models that (1) unifies instance- and subset-level inspections, (2) tightly
integrates overview of complex models and localized inspection, and
(3) scales to a variety of industry-scale datasets and models. ACTIVIS
visualizes how neurons are activated by user-specified instances or
instance subsets, to help users understand how a model derives its
predictions. Users can freely define subsets with raw data attributes,
transformed features, and output results, enabling model inspection
from multiple angles. While many existing deep learning visualization
tools support instance-based exploration [10, 14, 18, 35, 38], ACTIVIS
is the first tool that simultaneously supports instance- and subset-based
exploration of the deep neural network models. In addition, to help
users get a high-level overview of the model, ACTIVIS provides a
graph-based representation of the model architecture, from which the
user can drill down to perform localized inspection of activations at
each model layer (node).

Illustrative scenario. To illustrate how ACTIVIS works in practice,
consider our user Susan who is training a word-level convolutional
neural network (CNN) model [19] to classify question sentences into
one of six categories (e.g., whether a question asks about numeric
values, as in “what is the diameter of a golf ball?”). Her dataset is part
of the TREC question answering data collections1 [25].

Susan is new to using this CNN model, so she decides to start by
using its default training parameters. After training completes, she
launches ACTIVIS, which runs in a web browser. ACTIVIS provides an
overview of the model by displaying its architecture as a computation
graph (Fig. 1A, top), summarizing the model structure. By exploring
the graph, Susan learns about the kind of operations (e.g., convolution)
that are performed, and how they are combined in the model.

Based on her experience working with other deep learning models,
she knows that a model’s performance is strongly correlated with its
last hidden layer, thus it would be informative to analyze that layer.
In ACTIVIS, a layer is represented as a rounded rectangular node
(highlighted in yellow, in Fig. 1A, bottom).

Susan clicks the node for the last hidden layer, and ACTIVIS displays
the layer’s neuron activation in a panel (Fig. 1B): the neuron activation
matrix view on the left shows how neurons (shown as columns) respond
to instances from different classes (rows); and the projected view on
the right shows the 2-D projection of instance activations.

In the matrix view, stronger neuron activations are shown in darker
gray. Susan sees that the activation patterns for the six classes (rows) are
quite visually distinctive, which may indicate satisfactory classification.
However, in the projected view, instances from different classes are not
clearly separated, which suggests some degree of misclassification.

To examine the misclassified instances and to investigate why they
are mislabeled, Susan brings up the instance selection panel (Fig. 1C).

1http://cogcomp.cs.illinois.edu/Data/QA/QC/

The classification results for the NUMber class alarm Susan, as many
instances in that class are misclassified (shown in right column). She
examines their associated question text by mouse-overing them, which
shows the text in popup tooltips. She wants to compare the activation
patterns of the correctly classified instances with those of the misclassi-
fied. So she adds two correct instances (#38, #47) and two misclassified
instances (#120, #126) to the neuron activation matrix view — indeed,
their activation patterns are very different (Fig. 1.4).

Taking a closer look at the instance selection panel, Susan sees that
many instances have blue borders, meaning they are misclassified as
DESCription. Inspecting the instances’ text reveals that they often begin
with “What is”, which is typical for questions asking for descriptions,
though they are also common for other question types, as in “What is
the diameter of a golf ball?” which is a numeric question (Fig. 1.3).

To understand the extent to which instances starting with “What is”
are generally misclassified by the model, Susan creates an instance sub-
set for them, and ACTIVIS adds this subset as a new row in the neuron
activation matrix view. Susan cannot discern any visual patterns from
the subset’s seemingly scattered, random neuron activations, suggesting
that the model may not yet have learned effective ways to distinguish
between the different intents of “What is” questions. Based on this
finding, she proceeds to train more models with different parameters
(e.g., consider longer n-grams) to better classify these questions.

ACTIVIS integrates multiple coordinated views to enable Susan to
work with complex models, and to flexibly explore them at instance-
and subset-level, helping her discover and narrow in to specific issues.

Deployment. ACTIVIS has been deployed on the machine learning
platform at Facebook. A developer can visualize a deep learning model
using ACTIVIS by adding only a few lines of code, which instructs
the model’s training process to generate data needed for ACTIVIS.
ACTIVIS users at Facebook (e.g., data scientists) can then train models
and use ACTIVIS via FBLearner Flow [4, 12], Facebook’s internal
machine learning web interface, without writing any additional code.

ACTIVIS’s main contributions include:
• A novel visual representation that unifies instance- and subset-level

inspections of neuron activations, which facilitates comparison of
activation patterns for multiple instances and instance subsets. Users
can flexibly specify subsets using input features, labels, or any inter-
mediate outcomes in a machine learning pipeline (Sect. 4.2).

• An interface that tightly integrates an overview of graph-structured
complex models and local inspection of neuron activations, allowing
users to explore the model at different levels of abstraction (Sect. 4.3).

• A deployed system scaling to large datasets and models (Sect. 4.4).

• Case studies with Facebook engineers and data scientists that high-
light how ACTIVIS helps them with their work, and usage scenarios
that describe how ACTIVIS may work with different models (Sect. 6).

2 RELATED WORK

2.1 Machine Learning Interpretation through Visualization

As the complexity of machine learning algorithms increases, many
researchers have recognized the importance of model interpreta-
tion and developed interactive tools to help users better understand
them [9,13,21,24,33,37]. While overall model accuracy can be used to
select models, users often want to understand why and when a model
would perform better than others, so that they can trust the model and
know how to further improve it. In developing interpretation tools,
revealing relationships between data and models is one of the the most
important design goals [29, 30]. Below we present two important ana-
lytics strategies that existing works adopt to help users understand how
data respond to machine learning models.

Instance-based exploration. A widely-used approach to under-
standing complex algorithms is by tracking how an example (i.e., train-
ing or test instance) behaves inside the models. Kulesza et al. [23]
presented an interactive system that explains how models made predic-
tions for each instance. Amershi et al. [3] developed ModelTracker,
a visualization tool that shows the distribution of instance scores for
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Abstract— While deep learning models have achieved state-of-the-art accuracies for many prediction tasks, understanding these
models remains a challenge. Despite the recent interest in developing visual tools to help users interpret deep learning models, the
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1 INTRODUCTION

Deep learning has led to major breakthroughs in various domains, such
as computer vision, natural language processing, and healthcare. Many
technology companies, like Facebook, have been increasingly adopting
deep learning models for their products [1, 2, 11]. While powerful deep
neural network models have significantly improved prediction accuracy,
understanding these models remains a challenge. Deep learning models
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are more difficult to interpret than most existing machine learning
models, because they capture nonlinear hidden structures of data using
a huge number of parameters. Therefore, in practice, people often use
them as “black boxes”, which could be detrimental because when the
models do not perform satisfactorily, users would not understand the
causes or know how to fix them [23, 33].

Despite the recent increasing interest in developing visual tools to
help users interpret deep learning models [10,26,35,38], the complexity
and wide variety of models deployed in industry, and the large-scale
datasets that they use, pose unique challenges that are inadequately ad-
dressed by existing work. For example, deep learning tasks in industry
often involve different types of data, including text and numerical data;
however most existing visualization research targets image datasets [38].
Furthermore, in designing interpretation tools for real-world use and
deployment at technology companies, it is a high priority that the tools
be flexible and generalizable to the wide variety of models and datasets
that the companies use for their many products and services. These
observations motivate us to design and develop a visualization tool for

interpreting industry-scale deep neural network models, one that can
work with a wide range of models, and can be readily deployed on
Facebook’s machine learning platform.

Through participatory design with researchers, data scientists, and
engineers at Facebook, we have identified common analysis strategies
that they use to interpret machine learning models. Specifically, we
learned that both instance- and subset-based exploration approaches
are common and effective. Instance-based exploration (e.g., how indi-
vidual instances contribute to a model’s accuracy) have demonstrated
success in a number of machine learning tasks [3,23,29]. As individual
instances are familiar to users, exploring by instances accelerates model
understanding. Another effective strategy is to leverage input features
or instance subsets specified by users [21, 23]. Slicing results by fea-
tures helps reveal relationships between data attributes and machine
learning algorithms’ outputs [17, 28, 29]. Subset-based exploration is
especially beneficial when dealing with huge datasets in industry, which
may consist of millions or billions of data points. Interpreting model
results at a higher, more abstract level helps drive down computation
time, and help user develop general sense about the models.

Our tool, called ACTIVIS, aims to support both interpretation strate-
gies for visualization and comparison of multiple instances and subsets.
ACTIVIS is an interactive visualization system for deep neural network
models that (1) unifies instance- and subset-level inspections, (2) tightly
integrates overview of complex models and localized inspection, and
(3) scales to a variety of industry-scale datasets and models. ACTIVIS
visualizes how neurons are activated by user-specified instances or
instance subsets, to help users understand how a model derives its
predictions. Users can freely define subsets with raw data attributes,
transformed features, and output results, enabling model inspection
from multiple angles. While many existing deep learning visualization
tools support instance-based exploration [10, 14, 18, 35, 38], ACTIVIS
is the first tool that simultaneously supports instance- and subset-based
exploration of the deep neural network models. In addition, to help
users get a high-level overview of the model, ACTIVIS provides a
graph-based representation of the model architecture, from which the
user can drill down to perform localized inspection of activations at
each model layer (node).

Illustrative scenario. To illustrate how ACTIVIS works in practice,
consider our user Susan who is training a word-level convolutional
neural network (CNN) model [19] to classify question sentences into
one of six categories (e.g., whether a question asks about numeric
values, as in “what is the diameter of a golf ball?”). Her dataset is part
of the TREC question answering data collections1 [25].

Susan is new to using this CNN model, so she decides to start by
using its default training parameters. After training completes, she
launches ACTIVIS, which runs in a web browser. ACTIVIS provides an
overview of the model by displaying its architecture as a computation
graph (Fig. 1A, top), summarizing the model structure. By exploring
the graph, Susan learns about the kind of operations (e.g., convolution)
that are performed, and how they are combined in the model.

Based on her experience working with other deep learning models,
she knows that a model’s performance is strongly correlated with its
last hidden layer, thus it would be informative to analyze that layer.
In ACTIVIS, a layer is represented as a rounded rectangular node
(highlighted in yellow, in Fig. 1A, bottom).

Susan clicks the node for the last hidden layer, and ACTIVIS displays
the layer’s neuron activation in a panel (Fig. 1B): the neuron activation
matrix view on the left shows how neurons (shown as columns) respond
to instances from different classes (rows); and the projected view on
the right shows the 2-D projection of instance activations.

In the matrix view, stronger neuron activations are shown in darker
gray. Susan sees that the activation patterns for the six classes (rows) are
quite visually distinctive, which may indicate satisfactory classification.
However, in the projected view, instances from different classes are not
clearly separated, which suggests some degree of misclassification.

To examine the misclassified instances and to investigate why they
are mislabeled, Susan brings up the instance selection panel (Fig. 1C).

1http://cogcomp.cs.illinois.edu/Data/QA/QC/

The classification results for the NUMber class alarm Susan, as many
instances in that class are misclassified (shown in right column). She
examines their associated question text by mouse-overing them, which
shows the text in popup tooltips. She wants to compare the activation
patterns of the correctly classified instances with those of the misclassi-
fied. So she adds two correct instances (#38, #47) and two misclassified
instances (#120, #126) to the neuron activation matrix view — indeed,
their activation patterns are very different (Fig. 1.4).

Taking a closer look at the instance selection panel, Susan sees that
many instances have blue borders, meaning they are misclassified as
DESCription. Inspecting the instances’ text reveals that they often begin
with “What is”, which is typical for questions asking for descriptions,
though they are also common for other question types, as in “What is
the diameter of a golf ball?” which is a numeric question (Fig. 1.3).

To understand the extent to which instances starting with “What is”
are generally misclassified by the model, Susan creates an instance sub-
set for them, and ACTIVIS adds this subset as a new row in the neuron
activation matrix view. Susan cannot discern any visual patterns from
the subset’s seemingly scattered, random neuron activations, suggesting
that the model may not yet have learned effective ways to distinguish
between the different intents of “What is” questions. Based on this
finding, she proceeds to train more models with different parameters
(e.g., consider longer n-grams) to better classify these questions.

ACTIVIS integrates multiple coordinated views to enable Susan to
work with complex models, and to flexibly explore them at instance-
and subset-level, helping her discover and narrow in to specific issues.

Deployment. ACTIVIS has been deployed on the machine learning
platform at Facebook. A developer can visualize a deep learning model
using ACTIVIS by adding only a few lines of code, which instructs
the model’s training process to generate data needed for ACTIVIS.
ACTIVIS users at Facebook (e.g., data scientists) can then train models
and use ACTIVIS via FBLearner Flow [4, 12], Facebook’s internal
machine learning web interface, without writing any additional code.

ACTIVIS’s main contributions include:
• A novel visual representation that unifies instance- and subset-level

inspections of neuron activations, which facilitates comparison of
activation patterns for multiple instances and instance subsets. Users
can flexibly specify subsets using input features, labels, or any inter-
mediate outcomes in a machine learning pipeline (Sect. 4.2).

• An interface that tightly integrates an overview of graph-structured
complex models and local inspection of neuron activations, allowing
users to explore the model at different levels of abstraction (Sect. 4.3).

• A deployed system scaling to large datasets and models (Sect. 4.4).

• Case studies with Facebook engineers and data scientists that high-
light how ACTIVIS helps them with their work, and usage scenarios
that describe how ACTIVIS may work with different models (Sect. 6).

2 RELATED WORK

2.1 Machine Learning Interpretation through Visualization

As the complexity of machine learning algorithms increases, many
researchers have recognized the importance of model interpreta-
tion and developed interactive tools to help users better understand
them [9,13,21,24,33,37]. While overall model accuracy can be used to
select models, users often want to understand why and when a model
would perform better than others, so that they can trust the model and
know how to further improve it. In developing interpretation tools,
revealing relationships between data and models is one of the the most
important design goals [29, 30]. Below we present two important ana-
lytics strategies that existing works adopt to help users understand how
data respond to machine learning models.

Instance-based exploration. A widely-used approach to under-
standing complex algorithms is by tracking how an example (i.e., train-
ing or test instance) behaves inside the models. Kulesza et al. [23]
presented an interactive system that explains how models made predic-
tions for each instance. Amershi et al. [3] developed ModelTracker,
a visualization tool that shows the distribution of instance scores for
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engineers and data scientists who regularly work with machine learning
and deep neural network models. At the high level, we learned that
instance- and subset-based strategies are both common and effective,
echoing findings from existing research.

Instance-based analysis. One natural way for users at Facebook to
understand complex models is by tracking how an individual example
(i.e., training or test instance) behaves inside the models; users often
have their own collection of example instances, for which they know
their characteristics and ground truth labels. Instance-level exploration
is especially useful when an instance is easy to interpret. For example,
an instance consisting of text only is much easier to understand than an
instance consisting of thousands of numerical features extracted from
an end user’s data.

Subset-based analysis. Instance-based analysis, however, is insuf-
ficient for all cases. Inspecting instances individually can be tedious,
and sometimes hinder insight discovery, such as when instances are
associated with many hard-to-interpret numerical features. We learned
that some Facebook researchers find subset-based analysis to be more
helpful for their work. For example, suppose an instance represents
an article that consists of many numerical features extracted from its
attributes (e.g., length, popularity). Some users would like to under-
stand how the models behave at higher-level categorization (e.g., by
topic, publication date). In addition, some users have curated instance
subsets. Understanding model behavior through such familiar subsets
promotes their understanding.

3.2 Design Challenges
Besides reaffirming the importance of two analysis strategies discussed
above, and the need to support them simultaneously in ACTIVIS, we
have identified additional design challenges through the participatory
design sessions. We summarize them into six key design challenges.
Thus far, they have not been adequately addressed by existing deep
learning visualization tools. And they shape the main design goals of
ACTIVIS, which we will describe in Sect. 4.1.

We have labeled the six challenges C1 – C6 and have grouped them
into three categories with the labels data, model, and analytics, which
indicate the causes for which the challenges arise.

C1. Diverse input sources and formats DATA

While deep learning has become popular because of its superior
performance for image data, it has also been applied to many
different data formats, including text and numerical features [2,
11, 16, 19]. Furthermore, a single model may jointly use multiple
types of data at a time. For example, to classify a Facebook post,
a model may jointly leverage its textual content, attached photos,
and user information, each of which may be associated with many
data attributes [2]. Working with such variety of data sources and
formats opens up many opportunities for model interpretation;
for example, we may be able to more easily categorize instances
using their associated numerical features that can be more readily
understood, instead of going the harder route of using image-
based features.

C2. High data volume DATA

Facebook, like many other companies, has a large amount of
data. The size of training data often reaches billions of rows
and thousands of features. This sheer size of data render many
existing visualization tools unusable as they are often designed to
visualize the whole dataset.

C3. Complex model architecture MODEL

Many existing visualization tools for deep learning models often
assume simple linear architectures where data linearly flow from
the input layer to the output layer (e.g., a series of convolution
and max-pooling layer in AlexNet) [10, 26, 38]. However, most
practical model architectures deployed in industry are very com-
plex [11]; they are often deep and wide, consisting of many layers,
neurons, and operations.

C4. A great variety of models MODEL

Researchers and engineers at Facebook develop and evaluate mod-

els for products every day. It is important for visualization tools
to be generalizable so they can work with many different kinds
of models. A visualization system would likely be impractical to
use or to deploy if a small change to a model requires significant
changes made to existing code or special case handling.

C5. Diverse subset definitions ANALYTICS

When performing subset-based analysis, users may want to define
subsets in many different ways. Since there are a large number
of input formats and input features, there are numerous ways
to specify subsets. Instead of providing a fixed set of ways to
define subsets, it is desirable to make this process flexible so that
users can flexibly define subsets that are relevant to their tasks
and goals.

C6. Simultaneous need for performing instance- and subset-level
analysis ANALYTICS

Instance- and subset-based are complementary analytics strate-
gies, and it is important to support both at the same time. Instance-
based analysis helps users track how an individual instance be-
haves in the models, but it is tedious to inspect many instances
one by one. By specifying subsets and enabling their comparison
with individual instances, users can learn how the models respond
to many different slices of the data.

4 ACTIVIS: VISUAL EXPLORATION OF NEURAL NETWORKS

Through the design challenges we identified (in Sect. 3.2) in our partici-
patory design sessions with researchers, engineers, and data scientists at
Facebook, we design and develop ACTIVIS, a novel interactive visual
tool for exploring a wide range of industry-scale deep neural network
models. In this section, we first present three main design goals distilled
from our conversations with Facebook participants (Sect. 4.1). Then,
for each design goal, we elaborate on how ACTIVIS achieves it through
its system design and visual exploration features (Sects. 4.2-4.4). We
label the three design goals G1 – G3.

4.1 Design Goals
G1. Unifying instance- and subset-based analysis to facilitate

comparison of multiple instance activations. From our par-
ticipatory design sessions, we learned that both instance- and
subset-based analysis are useful and complementary. We aim
to support subset-level exploration by enabling users to flexibly
define instance subsets for different data types (C1, C5), e.g.,
a set of documents that contain a specific word. Subset-based
analysis also allows users to explore datasets at higher-level ab-
straction, scaling to billion-scale data or larger (C2). Furthermore,
we would like to unify instance- and subset-level inspections to fa-
cilitate comparison of multiple instances and groups of instances
in a single view (C6).

G2. Tight integration of overview of model architecture and lo-
calized inspection of activations. Industry-scale deep neural
network models are often very complex, consisting of many op-
erations (C3). Visualizing every detail and activation value for
all intermediate layers can overwhelm users. Therefore, we aim
to present the architecture of the models as a starting point of
exploration, and let users switch to the detailed inspection of
activations.

G3. Scaling to industry-scale datasets and models through flexi-
ble system design. For ACTIVIS to work with many different
large-scale models and datasets used in practice, it is important
for the system to be flexible and scalable. We aim to support
as many different kinds of data types and classification models
as what FBLearner currently does (e.g., image, text, numerical)
(C1, C4). We would like to achieve this by developing a flexible,
modularized system that allows developers to use ACTIVIS for
their models with simple API functions, while addressing visual
and computational scalability challenges through a multipronged
approach (C2, C3).

binary classification tasks and allows users to examine each instance in-
dividually. The researchers from the same group recently extended their
work for multi-classification tasks [32]. While the above-mentioned
tools were designed for model-agnostic, there are also tools designed
specifically for neural network models [14, 18, 34]. These tools enable
users to pick an instance and feed it to the models and show how the
parameters of the models change. We will describe them in more detail
shortly, in Sect. 2.2.

Feature- and subset-based exploration. While instance-based ex-
ploration is helpful for tracking how models respond to individual
examples, feature- or subset-based exploration enables users to bet-
ter understand the relationships between data and models, as machine
learning features make it possible for instances to be grouped and sliced
in multiple ways. Researchers have utilized features to visually de-
scribe how the models captured the structure of datasets [8, 20, 21, 23].
Kulesza et al. [23] used the importance weight of each feature in the
Naive Bayes algorithm, and Krause et al. [21] used partial dependence
to show the relationships between features and results. To enable users
to analyze results not only by predefined features, researchers have
developed tools that enable users to specify instance subsets. Speci-
fying groups can be a good first step for analyzing machine learning
results [22], as it provides users with an effective way for analyzing
complex multidimensional data. In particular, people in the medical
domain often perform similar processes, called cohort construction,
and Krause et al. [22] developed an interactive tool that helps this
process. McMahan et al. [28] presented their internal tool that allows
users to visually compare the performance differences between models
by subsets. MLCube [17] enabled users to interactively explore and
define instance subsets using both raw data attributes and transformed
features, and compute evaluation metrics over the subsets.

2.2 Interactive Visualization of Deep Learning Models
Deep learning has become very popular, largely thanks to the state-of-
the-art performance achieved by convolutional neural network models,
commonly used for analyzing image datasets in computer vision. Since
deep neural network models typically consist of many parameters, re-
searchers have recognized deep learning interpretation as an important
research area. A common approach is to show filters or activations
for each neural network layer. This helps users understand what the
models have learned in the hidden structure throughout the layers.

Interactive visualization tools. A number of interactive tools have
been developed to effectively visualize the activation information.
Tzeng and Ma [36] was one of the first visualization tools designed
for neural network models. While it did not target deep networks, it
represented each neuron as a node and visualized a given instance’s
activations. This idea has been extended to the case of deep neural
networks. Karpathy [18] visualized the activations for each layer of
a neural network on his website. Harley [14] developed an interac-
tive prototype that shows activations for a given instance. Smilkov et
al. [34] developed an interactive prototype for educational purposes,
called TensorFlow Playground, which visualized training parameters
to help users explore how models process a given instance to make
predictions. However, these tools do not scale to large dataset or the
complex models commonly used in industry.

Towards scalable visualization systems. CNNVis [26] is an inter-
active visual analytics system designed for convolutional networks. It
modeled neurons as a directed graph and utilized several techniques to
make it scalable. For example, it uses hierarchical clustering to group
neurons and uses bi-directional edge bundling to summarize edges
among neurons. They also compute average activations for instances
from the same class. However, users cannot feed instances into the sys-
tem, to perform instance-based analysis which is an effective strategy
for understanding machine learning models.

Another way of handling large number of neurons is to employ di-
mensionality reduction techniques. By projecting a high-dimensional
vector into two-dimensional space, we can better represent the high-
dimensional nature of deep neural network models. Rauber et al. [31]
studied how 2-D projected view of instance activations and neuron fil-
ters can help users better understand neural network models. Google’s

Embedding Projector [35] tool, which is integrated into their Tensor-
flow deep learning framework [1], provides an interactive 3-D pro-
jection with some additional features (e.g., similar instance search).
ReVACNN [10] is an interactive visual analytics system that uses di-
mensionality reduction for convolutional networks. While CNNVis [26]
uses clustering to handle large number of neurons, ReVACNN shows
both individual neurons and a 2-D projection embedded space (through
t-SNE). The individual neuron view helps users explore how individual
neurons respond to a user-selected instance; the projected view can
help them get a visual summary of instance activations. However, these
two views work independently. It is difficult for users to combine their
analyses, or compare multiple instances’ neuron activations.

3 ANALYTICS NEEDS FOR INDUSTRY-SCALE PROBLEMS

The ACTIVIS project started in April 2016. Since its inception, we
have conducted participatory design sessions with over 15 Facebook
engineers, researchers, and data scientists across multiple teams to learn
about their visual analytics needs. Together, we collaboratively design
and develop ACTIVIS and iteratively improve it.

In Sect. 3.1, we describe the workflow of how machine learning
models are typically trained and used at Facebook, and how results are
interpreted. This discussion provides the background information and
context for which visualization tools may help improve deep learning
model interpretation.

In Sect. 3.2, we summarize our main findings from our participa-
tory design sessions to highlight six key design challenges that stem
from Facebook’s needs to work with large-scale datasets, complex
deep learning model architectures, and diverse analytics needs. These
challenges have been inadequately addressed by current deep learning
visualization tools, and they motivate and shape our design goals for
ACTIVIS, which we will describe in Sect. 4.1.

3.1 Background: Machine Learning Practice at Facebook
Facebook uses machine learning for some of their products. Re-
searchers, engineers, and data scientists from different teams at Face-
book perform a wide range of machine learning tasks.

We first describe how Facebook’s machine learning platform helps
users train models and interpret their results. Then, we present findings
from our discussion with machine learning users and their common
analytics patterns in interpreting machine learning models. These
findings guide our discovery of design challenges that ACTIVIS aims
to address.

3.1.1 FBLearner Flow: Facebook’s Machine Learning Platform
To help engineers, including non-experts of machine learning, to more
easily reuse algorithms in different products and manage experiments
with ease, Facebook built a unified machine learning platform called
FBLearner Flow [4, 12]. It supports many machine learning workflows.
Users can easily train models and see their results using the FBLearner
Flow interface without writing any code. For example, users can train
a model by picking a relevant workflow from a collection of existing
workflows and specifying several input parameters for the selected
workflow (e.g., location of training dataset, learning parameters). The
FBLearner Flow interface is particularly helpful for users who want
to use existing machine learning models for their datasets without
knowing their internal details.

Once the training process is done, the interface provides high-level
information to aid result analysis (e.g., precision, accuracy). To help
users interpret the results from additional multiple aspects, several other
statistics are available in the interface (e.g., partial dependence plots).
Users can inspect models’ internal details via interactive visualization
(e.g., for decision trees) [4]. As deep neural network models gain
popularity, developing visualization for their interpretation is a natural
step for FBLearner Flow.

3.1.2 Analytics Patterns for Interpretation
To better understand how machine learning users at Facebook interpret
model results, and how we may design ACTIVIS to better support
their analysis, we conducted participatory design sessions with over 15



KAHNG ET AL.: ACTIVIS: VISUAL EXPLORATION OF INDUSTRY-SCALE DEEP NEURAL NETWORK MODELS 91

engineers and data scientists who regularly work with machine learning
and deep neural network models. At the high level, we learned that
instance- and subset-based strategies are both common and effective,
echoing findings from existing research.

Instance-based analysis. One natural way for users at Facebook to
understand complex models is by tracking how an individual example
(i.e., training or test instance) behaves inside the models; users often
have their own collection of example instances, for which they know
their characteristics and ground truth labels. Instance-level exploration
is especially useful when an instance is easy to interpret. For example,
an instance consisting of text only is much easier to understand than an
instance consisting of thousands of numerical features extracted from
an end user’s data.

Subset-based analysis. Instance-based analysis, however, is insuf-
ficient for all cases. Inspecting instances individually can be tedious,
and sometimes hinder insight discovery, such as when instances are
associated with many hard-to-interpret numerical features. We learned
that some Facebook researchers find subset-based analysis to be more
helpful for their work. For example, suppose an instance represents
an article that consists of many numerical features extracted from its
attributes (e.g., length, popularity). Some users would like to under-
stand how the models behave at higher-level categorization (e.g., by
topic, publication date). In addition, some users have curated instance
subsets. Understanding model behavior through such familiar subsets
promotes their understanding.

3.2 Design Challenges
Besides reaffirming the importance of two analysis strategies discussed
above, and the need to support them simultaneously in ACTIVIS, we
have identified additional design challenges through the participatory
design sessions. We summarize them into six key design challenges.
Thus far, they have not been adequately addressed by existing deep
learning visualization tools. And they shape the main design goals of
ACTIVIS, which we will describe in Sect. 4.1.

We have labeled the six challenges C1 – C6 and have grouped them
into three categories with the labels data, model, and analytics, which
indicate the causes for which the challenges arise.

C1. Diverse input sources and formats DATA

While deep learning has become popular because of its superior
performance for image data, it has also been applied to many
different data formats, including text and numerical features [2,
11, 16, 19]. Furthermore, a single model may jointly use multiple
types of data at a time. For example, to classify a Facebook post,
a model may jointly leverage its textual content, attached photos,
and user information, each of which may be associated with many
data attributes [2]. Working with such variety of data sources and
formats opens up many opportunities for model interpretation;
for example, we may be able to more easily categorize instances
using their associated numerical features that can be more readily
understood, instead of going the harder route of using image-
based features.

C2. High data volume DATA

Facebook, like many other companies, has a large amount of
data. The size of training data often reaches billions of rows
and thousands of features. This sheer size of data render many
existing visualization tools unusable as they are often designed to
visualize the whole dataset.

C3. Complex model architecture MODEL

Many existing visualization tools for deep learning models often
assume simple linear architectures where data linearly flow from
the input layer to the output layer (e.g., a series of convolution
and max-pooling layer in AlexNet) [10, 26, 38]. However, most
practical model architectures deployed in industry are very com-
plex [11]; they are often deep and wide, consisting of many layers,
neurons, and operations.

C4. A great variety of models MODEL

Researchers and engineers at Facebook develop and evaluate mod-

els for products every day. It is important for visualization tools
to be generalizable so they can work with many different kinds
of models. A visualization system would likely be impractical to
use or to deploy if a small change to a model requires significant
changes made to existing code or special case handling.

C5. Diverse subset definitions ANALYTICS

When performing subset-based analysis, users may want to define
subsets in many different ways. Since there are a large number
of input formats and input features, there are numerous ways
to specify subsets. Instead of providing a fixed set of ways to
define subsets, it is desirable to make this process flexible so that
users can flexibly define subsets that are relevant to their tasks
and goals.

C6. Simultaneous need for performing instance- and subset-level
analysis ANALYTICS

Instance- and subset-based are complementary analytics strate-
gies, and it is important to support both at the same time. Instance-
based analysis helps users track how an individual instance be-
haves in the models, but it is tedious to inspect many instances
one by one. By specifying subsets and enabling their comparison
with individual instances, users can learn how the models respond
to many different slices of the data.

4 ACTIVIS: VISUAL EXPLORATION OF NEURAL NETWORKS

Through the design challenges we identified (in Sect. 3.2) in our partici-
patory design sessions with researchers, engineers, and data scientists at
Facebook, we design and develop ACTIVIS, a novel interactive visual
tool for exploring a wide range of industry-scale deep neural network
models. In this section, we first present three main design goals distilled
from our conversations with Facebook participants (Sect. 4.1). Then,
for each design goal, we elaborate on how ACTIVIS achieves it through
its system design and visual exploration features (Sects. 4.2-4.4). We
label the three design goals G1 – G3.

4.1 Design Goals
G1. Unifying instance- and subset-based analysis to facilitate

comparison of multiple instance activations. From our par-
ticipatory design sessions, we learned that both instance- and
subset-based analysis are useful and complementary. We aim
to support subset-level exploration by enabling users to flexibly
define instance subsets for different data types (C1, C5), e.g.,
a set of documents that contain a specific word. Subset-based
analysis also allows users to explore datasets at higher-level ab-
straction, scaling to billion-scale data or larger (C2). Furthermore,
we would like to unify instance- and subset-level inspections to fa-
cilitate comparison of multiple instances and groups of instances
in a single view (C6).

G2. Tight integration of overview of model architecture and lo-
calized inspection of activations. Industry-scale deep neural
network models are often very complex, consisting of many op-
erations (C3). Visualizing every detail and activation value for
all intermediate layers can overwhelm users. Therefore, we aim
to present the architecture of the models as a starting point of
exploration, and let users switch to the detailed inspection of
activations.

G3. Scaling to industry-scale datasets and models through flexi-
ble system design. For ACTIVIS to work with many different
large-scale models and datasets used in practice, it is important
for the system to be flexible and scalable. We aim to support
as many different kinds of data types and classification models
as what FBLearner currently does (e.g., image, text, numerical)
(C1, C4). We would like to achieve this by developing a flexible,
modularized system that allows developers to use ACTIVIS for
their models with simple API functions, while addressing visual
and computational scalability challenges through a multipronged
approach (C2, C3).

binary classification tasks and allows users to examine each instance in-
dividually. The researchers from the same group recently extended their
work for multi-classification tasks [32]. While the above-mentioned
tools were designed for model-agnostic, there are also tools designed
specifically for neural network models [14, 18, 34]. These tools enable
users to pick an instance and feed it to the models and show how the
parameters of the models change. We will describe them in more detail
shortly, in Sect. 2.2.

Feature- and subset-based exploration. While instance-based ex-
ploration is helpful for tracking how models respond to individual
examples, feature- or subset-based exploration enables users to bet-
ter understand the relationships between data and models, as machine
learning features make it possible for instances to be grouped and sliced
in multiple ways. Researchers have utilized features to visually de-
scribe how the models captured the structure of datasets [8, 20, 21, 23].
Kulesza et al. [23] used the importance weight of each feature in the
Naive Bayes algorithm, and Krause et al. [21] used partial dependence
to show the relationships between features and results. To enable users
to analyze results not only by predefined features, researchers have
developed tools that enable users to specify instance subsets. Speci-
fying groups can be a good first step for analyzing machine learning
results [22], as it provides users with an effective way for analyzing
complex multidimensional data. In particular, people in the medical
domain often perform similar processes, called cohort construction,
and Krause et al. [22] developed an interactive tool that helps this
process. McMahan et al. [28] presented their internal tool that allows
users to visually compare the performance differences between models
by subsets. MLCube [17] enabled users to interactively explore and
define instance subsets using both raw data attributes and transformed
features, and compute evaluation metrics over the subsets.

2.2 Interactive Visualization of Deep Learning Models
Deep learning has become very popular, largely thanks to the state-of-
the-art performance achieved by convolutional neural network models,
commonly used for analyzing image datasets in computer vision. Since
deep neural network models typically consist of many parameters, re-
searchers have recognized deep learning interpretation as an important
research area. A common approach is to show filters or activations
for each neural network layer. This helps users understand what the
models have learned in the hidden structure throughout the layers.

Interactive visualization tools. A number of interactive tools have
been developed to effectively visualize the activation information.
Tzeng and Ma [36] was one of the first visualization tools designed
for neural network models. While it did not target deep networks, it
represented each neuron as a node and visualized a given instance’s
activations. This idea has been extended to the case of deep neural
networks. Karpathy [18] visualized the activations for each layer of
a neural network on his website. Harley [14] developed an interac-
tive prototype that shows activations for a given instance. Smilkov et
al. [34] developed an interactive prototype for educational purposes,
called TensorFlow Playground, which visualized training parameters
to help users explore how models process a given instance to make
predictions. However, these tools do not scale to large dataset or the
complex models commonly used in industry.

Towards scalable visualization systems. CNNVis [26] is an inter-
active visual analytics system designed for convolutional networks. It
modeled neurons as a directed graph and utilized several techniques to
make it scalable. For example, it uses hierarchical clustering to group
neurons and uses bi-directional edge bundling to summarize edges
among neurons. They also compute average activations for instances
from the same class. However, users cannot feed instances into the sys-
tem, to perform instance-based analysis which is an effective strategy
for understanding machine learning models.

Another way of handling large number of neurons is to employ di-
mensionality reduction techniques. By projecting a high-dimensional
vector into two-dimensional space, we can better represent the high-
dimensional nature of deep neural network models. Rauber et al. [31]
studied how 2-D projected view of instance activations and neuron fil-
ters can help users better understand neural network models. Google’s

Embedding Projector [35] tool, which is integrated into their Tensor-
flow deep learning framework [1], provides an interactive 3-D pro-
jection with some additional features (e.g., similar instance search).
ReVACNN [10] is an interactive visual analytics system that uses di-
mensionality reduction for convolutional networks. While CNNVis [26]
uses clustering to handle large number of neurons, ReVACNN shows
both individual neurons and a 2-D projection embedded space (through
t-SNE). The individual neuron view helps users explore how individual
neurons respond to a user-selected instance; the projected view can
help them get a visual summary of instance activations. However, these
two views work independently. It is difficult for users to combine their
analyses, or compare multiple instances’ neuron activations.

3 ANALYTICS NEEDS FOR INDUSTRY-SCALE PROBLEMS

The ACTIVIS project started in April 2016. Since its inception, we
have conducted participatory design sessions with over 15 Facebook
engineers, researchers, and data scientists across multiple teams to learn
about their visual analytics needs. Together, we collaboratively design
and develop ACTIVIS and iteratively improve it.

In Sect. 3.1, we describe the workflow of how machine learning
models are typically trained and used at Facebook, and how results are
interpreted. This discussion provides the background information and
context for which visualization tools may help improve deep learning
model interpretation.

In Sect. 3.2, we summarize our main findings from our participa-
tory design sessions to highlight six key design challenges that stem
from Facebook’s needs to work with large-scale datasets, complex
deep learning model architectures, and diverse analytics needs. These
challenges have been inadequately addressed by current deep learning
visualization tools, and they motivate and shape our design goals for
ACTIVIS, which we will describe in Sect. 4.1.

3.1 Background: Machine Learning Practice at Facebook
Facebook uses machine learning for some of their products. Re-
searchers, engineers, and data scientists from different teams at Face-
book perform a wide range of machine learning tasks.

We first describe how Facebook’s machine learning platform helps
users train models and interpret their results. Then, we present findings
from our discussion with machine learning users and their common
analytics patterns in interpreting machine learning models. These
findings guide our discovery of design challenges that ACTIVIS aims
to address.

3.1.1 FBLearner Flow: Facebook’s Machine Learning Platform
To help engineers, including non-experts of machine learning, to more
easily reuse algorithms in different products and manage experiments
with ease, Facebook built a unified machine learning platform called
FBLearner Flow [4, 12]. It supports many machine learning workflows.
Users can easily train models and see their results using the FBLearner
Flow interface without writing any code. For example, users can train
a model by picking a relevant workflow from a collection of existing
workflows and specifying several input parameters for the selected
workflow (e.g., location of training dataset, learning parameters). The
FBLearner Flow interface is particularly helpful for users who want
to use existing machine learning models for their datasets without
knowing their internal details.

Once the training process is done, the interface provides high-level
information to aid result analysis (e.g., precision, accuracy). To help
users interpret the results from additional multiple aspects, several other
statistics are available in the interface (e.g., partial dependence plots).
Users can inspect models’ internal details via interactive visualization
(e.g., for decision trees) [4]. As deep neural network models gain
popularity, developing visualization for their interpretation is a natural
step for FBLearner Flow.

3.1.2 Analytics Patterns for Interpretation
To better understand how machine learning users at Facebook interpret
model results, and how we may design ACTIVIS to better support
their analysis, we conducted participatory design sessions with over 15
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Fig. 3. Sorting neurons (columns) by their average activation values for
the LOC (location) class helps users more easily spot instances whose
activation patterns are positively correlated with that of the class, e.g.,
instances #94 and #30 (see green arrows).

Fig. 4. Hovering over an instance subset (e.g., for the NUMber class)
highlights its instances (purple dots) in the t-SNE projected view.

considered an effective exploration approach [9, 10, 31, 35]. ACTIVIS
performs t-distributed stochastic neighbor embedding (t-SNE) [27] of
instance activations. Fig. 2B.2 shows an example where each dot in the
view represents an instance (colored by its true class), and instances
with similar activation values are placed closer together by t-SNE.

The projected view complements with the neuron activation matrix
view (Fig. 2B.1). Hovering over a subset’s row in the matrix would
highlight the subset’s instances in the projected view, allowing the user
to see how instances within the subsets are distributed. In the projected
view, hovering over an instance would display its activations; clicking
that instance will add it to the matrix view as a new row.

4.3 Interface: Tight Integration of Model, Instances, and
Activation Visualization

The above visual representation of activations is the core of our visual
analytics system. To help users interactively specify where to start their
exploration of a large model, we designed and developed an integrated
system interface. As depicted in Fig. 2, the interface consists of multiple
panels. We describe each of them below.

A: Overview of Model Architecture

Deep learning models often consist of many operations, which makes it
difficult for users to fully understand their structure. We aim to provide
an overview of the model architecture to users, so they can first make
sense of the models, before moving on to parts of the models that they
are interested in.

Deep neural network models are often represented as computation

graphs (DAGs) (as in many deep learning frameworks like Caffe23,
TensorFlow [1], and Theano [6]). The frameworks provide a set of op-
erators (e.g., convolution, matrix multiplication, concatenation) to build
machine learning programs, and model developers (who create new
machine learning workflows for FBLearner Flow) write the programs
using these building blocks. Presenting this graph to users would help
them first understand the structure of the models and find interesting
layers to explore the detailed activations.

There are several possible ways in visualizing computation graphs.
One approach is to represent operators as nodes and variables as edges.
This approach has gained popularity, thanks to its adoption by Tensor-
Flow. Another way is to consider both an operator and a variable as
a single node. Then the graph becomes a bipartite graph: the direct
neighbors of an operator node are always variable nodes; the neighbors
of a variable node are always operator nodes. Both approaches have
their pros and cons. While the first approach can have a compact repre-
sentation by reducing the number of nodes, the second one, a classical
way to represent programs and diagrams, makes it easier to track data.
For ACTIVIS, it would be better to make variable nodes easy to locate
as we present activations for a selected variable. Therefore, we decided
to represent the graph using the second approach.

The visualization of the computation graph is shown on the top
panel (Fig. 2A). The direction of data flow is from left (input) to right
(output). Each node represents either an operator (dark rectangle)
or tensor (circle). To explore this medium-sized graph (often >100
nodes), users can zoom and pan the graph using a mouse. When users
hover over a node, its full name is shown, and when they click it, its
corresponding activation is shown in the neuron activation panel.

B: Activation for Selected Node

When users select a node of interest from the computation graph, the
corresponding neuron activation panel (Fig. 2B) will be added to the
bottom of the computation graph panel. The neuron activation panel has
three subpanels: (0) the names of the selected node and its neighbors,
(1) the neuron activation matrix view, and (2) the projected view. The
left subpanel shows the name of the selected variable node and its
neighbors. Users can hover over a node to highlight where it is located
in the computation graph on the top. The neuron matrix view (Fig. 2B.1)
and projected view (Fig. 2B.2) show instance activations for the selected
node. Note that we described these views in Sect. 4.2.

Users can select multiple nodes and visually compare their activation
patterns. Fig. 5 illustrates that users can visually explore how models
learned the hidden structure of data through multiple layers. The figure
shows three layers, from top to bottom: the second-to-last hidden layer
which concatenates multiple maxpool layers [19], the last hidden layer,
and the output layer. As shown in the figure, the layer’s projected views
show that as data flow through the network, from input (top) to output
(bottom), neuron activation patterns gradually become more discernible
and clustered.

C: Instance Selection

The instance selection panel helps users get an overview of instances
with their prediction results and determine which ones should be added
to the neuron activation view for further exploration and comparison.

The panel is located at the right side on the interface. It visually
summarizes prediction results. Each square represents an instance.
Instances are vertically grouped based on their true label. Within a true
label (row group), the left column shows correctly classified instances,
sorted by their prediction scores in descending order (from top to
bottom, and left to right within each row). The right column shows
misclassified instances. An instance’s fill color represents its true label,
its border color the predicted label. When the user hovers over an
instance, a tooltip will display basic information about the instance
(e.g., textual content, prediction scores).

The panel also helps users determine which instances can be added
to the activation view for further exploration. By hovering over one of
the instance boxes, users can see the instance’s activations. A new row

3https://caffe2.ai/

Fig. 2. ACTIVIS integrates multiple coordinated views. A. The computation graph summarizes the model architecture. B. The neuron activation
panel’s matrix view displays activations for instances, subsets, and classes (at B1), and its projected view shows a 2-D t-SNE projection of the
instance activations (at B2). C. The instance selection panel displays instances and their classification results; correctly classified instances shown
on the left, misclassified on the right. Clicking an instance adds it to the neuron activation matrix view. The dataset used is from the public TREC
question answering data collections [25]. The trained model is a word-level convolutional model based on [19].

4.2 Exploring Neuron Activations by Instance Subsets
Drawing inspiration from existing visualizations [14, 18, 26, 38], AC-
TIVIS supports the visualization for individual instances. However, it
is difficult for users to spot interesting patterns and insights if he can
only visualize one instance at a time. For example, consider a hidden
layer consisting of 100 neurons. The neuron activations for an instance
is a 100-dimension vector consisting of 100 numerical values, where
each element in the vector does not have any specific meaning. Instead,
if multiple vectors of activation values are presented together, the user
may more readily derive meaning by comparing them. For example,
users may find that some dimensions may respond more strongly to
certain instances, or some dimensions are negatively correlated with
certain classes.

A challenge in supporting the comparison of multiple instances
stems from the sheer size of data instances; it is impossible to present
activations for all instances. To tackle this challenge, we enable users
to define instance subsets. Then we compute the average activations
for instances within the subsets. The vector of average activations for
a subset can then be placed next to the vectors of other instances or
subsets for comparison.

The neuron activation matrix, shown at Fig. 2B.1, illustrates this
concept of comparing multiple instances and instance subsets, using
the TREC question classification dataset2 [25]. The dataset consists
of 5,500 question sentences and each sentence is labeled by one of
six categories (e.g., is a question asking about location?). Fig. 2B
shows the activations for the last hidden layer of the word-level CNN
model [7, 19]. Each row represents either an instance or a subset of
instances. For example, the first row represents a subset of instances

2http://cogcomp.cs.illinois.edu/Data/QA/QC/

whose true class is ‘DESC’ (descriptions). Each column represents a
neuron. Each cell (circle) is a neuron activation value for a subset. A
darker circle indicates stronger activation. This matrix view exposes
the hidden relationships between neurons and data. For instance, a user
may find out a certain neuron is highly activated by instances whose
true class is ‘LOC’.

Flexible subset definition. In ACTIVIS, users can flexibly define
instance subsets. A subset can be specified using multiple properties
of the instances, in many different ways. Example properties include
raw data attributes, labels, features, textual content, output scores, and
predicted label. Our datasets consist of instances with many features
and a combination of different types of data. Flexible subset definition
enables users to analyze models from different angles. For example,
for instances representing text documents, the user may create a subset
for documents that contains a specific phrase. For instances contain-
ing numerical features, users can specify conditions, using operations
similar to relational selections in databases (e.g., age > 20, topic =
’sports’). By default, a subset is created for each class (e.g., a subset
for the ‘DESC’ class).

Sorting to reveal patterns. The difficulty in recognizing patterns
increases with the number of neurons. ACTIVIS allows users to sort
neurons (i.e., columns) by their activation values. For example, in
Fig. 3, the neurons are sorted based on the average activation values
for the class ‘LOC’. Sorting facilitates activation comparison and helps
reveal patterns, such as spotting instances that are positively correlated
with their true class in terms of the activation pattern (e.g., instances
#94 and #30 correlate with the ‘LOC’ class in Fig. 3).

2-D projection of activations. To help users visually examine in-
stance subsets, ACTIVIS provides a 2-D projected view of instance ac-
tivations. Projection of high-dimensional data into 2-D space has been
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Fig. 3. Sorting neurons (columns) by their average activation values for
the LOC (location) class helps users more easily spot instances whose
activation patterns are positively correlated with that of the class, e.g.,
instances #94 and #30 (see green arrows).

Fig. 4. Hovering over an instance subset (e.g., for the NUMber class)
highlights its instances (purple dots) in the t-SNE projected view.

considered an effective exploration approach [9, 10, 31, 35]. ACTIVIS
performs t-distributed stochastic neighbor embedding (t-SNE) [27] of
instance activations. Fig. 2B.2 shows an example where each dot in the
view represents an instance (colored by its true class), and instances
with similar activation values are placed closer together by t-SNE.

The projected view complements with the neuron activation matrix
view (Fig. 2B.1). Hovering over a subset’s row in the matrix would
highlight the subset’s instances in the projected view, allowing the user
to see how instances within the subsets are distributed. In the projected
view, hovering over an instance would display its activations; clicking
that instance will add it to the matrix view as a new row.

4.3 Interface: Tight Integration of Model, Instances, and
Activation Visualization

The above visual representation of activations is the core of our visual
analytics system. To help users interactively specify where to start their
exploration of a large model, we designed and developed an integrated
system interface. As depicted in Fig. 2, the interface consists of multiple
panels. We describe each of them below.

A: Overview of Model Architecture

Deep learning models often consist of many operations, which makes it
difficult for users to fully understand their structure. We aim to provide
an overview of the model architecture to users, so they can first make
sense of the models, before moving on to parts of the models that they
are interested in.

Deep neural network models are often represented as computation

graphs (DAGs) (as in many deep learning frameworks like Caffe23,
TensorFlow [1], and Theano [6]). The frameworks provide a set of op-
erators (e.g., convolution, matrix multiplication, concatenation) to build
machine learning programs, and model developers (who create new
machine learning workflows for FBLearner Flow) write the programs
using these building blocks. Presenting this graph to users would help
them first understand the structure of the models and find interesting
layers to explore the detailed activations.

There are several possible ways in visualizing computation graphs.
One approach is to represent operators as nodes and variables as edges.
This approach has gained popularity, thanks to its adoption by Tensor-
Flow. Another way is to consider both an operator and a variable as
a single node. Then the graph becomes a bipartite graph: the direct
neighbors of an operator node are always variable nodes; the neighbors
of a variable node are always operator nodes. Both approaches have
their pros and cons. While the first approach can have a compact repre-
sentation by reducing the number of nodes, the second one, a classical
way to represent programs and diagrams, makes it easier to track data.
For ACTIVIS, it would be better to make variable nodes easy to locate
as we present activations for a selected variable. Therefore, we decided
to represent the graph using the second approach.

The visualization of the computation graph is shown on the top
panel (Fig. 2A). The direction of data flow is from left (input) to right
(output). Each node represents either an operator (dark rectangle)
or tensor (circle). To explore this medium-sized graph (often >100
nodes), users can zoom and pan the graph using a mouse. When users
hover over a node, its full name is shown, and when they click it, its
corresponding activation is shown in the neuron activation panel.

B: Activation for Selected Node

When users select a node of interest from the computation graph, the
corresponding neuron activation panel (Fig. 2B) will be added to the
bottom of the computation graph panel. The neuron activation panel has
three subpanels: (0) the names of the selected node and its neighbors,
(1) the neuron activation matrix view, and (2) the projected view. The
left subpanel shows the name of the selected variable node and its
neighbors. Users can hover over a node to highlight where it is located
in the computation graph on the top. The neuron matrix view (Fig. 2B.1)
and projected view (Fig. 2B.2) show instance activations for the selected
node. Note that we described these views in Sect. 4.2.

Users can select multiple nodes and visually compare their activation
patterns. Fig. 5 illustrates that users can visually explore how models
learned the hidden structure of data through multiple layers. The figure
shows three layers, from top to bottom: the second-to-last hidden layer
which concatenates multiple maxpool layers [19], the last hidden layer,
and the output layer. As shown in the figure, the layer’s projected views
show that as data flow through the network, from input (top) to output
(bottom), neuron activation patterns gradually become more discernible
and clustered.

C: Instance Selection

The instance selection panel helps users get an overview of instances
with their prediction results and determine which ones should be added
to the neuron activation view for further exploration and comparison.

The panel is located at the right side on the interface. It visually
summarizes prediction results. Each square represents an instance.
Instances are vertically grouped based on their true label. Within a true
label (row group), the left column shows correctly classified instances,
sorted by their prediction scores in descending order (from top to
bottom, and left to right within each row). The right column shows
misclassified instances. An instance’s fill color represents its true label,
its border color the predicted label. When the user hovers over an
instance, a tooltip will display basic information about the instance
(e.g., textual content, prediction scores).

The panel also helps users determine which instances can be added
to the activation view for further exploration. By hovering over one of
the instance boxes, users can see the instance’s activations. A new row

3https://caffe2.ai/

Fig. 2. ACTIVIS integrates multiple coordinated views. A. The computation graph summarizes the model architecture. B. The neuron activation
panel’s matrix view displays activations for instances, subsets, and classes (at B1), and its projected view shows a 2-D t-SNE projection of the
instance activations (at B2). C. The instance selection panel displays instances and their classification results; correctly classified instances shown
on the left, misclassified on the right. Clicking an instance adds it to the neuron activation matrix view. The dataset used is from the public TREC
question answering data collections [25]. The trained model is a word-level convolutional model based on [19].

4.2 Exploring Neuron Activations by Instance Subsets
Drawing inspiration from existing visualizations [14, 18, 26, 38], AC-
TIVIS supports the visualization for individual instances. However, it
is difficult for users to spot interesting patterns and insights if he can
only visualize one instance at a time. For example, consider a hidden
layer consisting of 100 neurons. The neuron activations for an instance
is a 100-dimension vector consisting of 100 numerical values, where
each element in the vector does not have any specific meaning. Instead,
if multiple vectors of activation values are presented together, the user
may more readily derive meaning by comparing them. For example,
users may find that some dimensions may respond more strongly to
certain instances, or some dimensions are negatively correlated with
certain classes.

A challenge in supporting the comparison of multiple instances
stems from the sheer size of data instances; it is impossible to present
activations for all instances. To tackle this challenge, we enable users
to define instance subsets. Then we compute the average activations
for instances within the subsets. The vector of average activations for
a subset can then be placed next to the vectors of other instances or
subsets for comparison.

The neuron activation matrix, shown at Fig. 2B.1, illustrates this
concept of comparing multiple instances and instance subsets, using
the TREC question classification dataset2 [25]. The dataset consists
of 5,500 question sentences and each sentence is labeled by one of
six categories (e.g., is a question asking about location?). Fig. 2B
shows the activations for the last hidden layer of the word-level CNN
model [7, 19]. Each row represents either an instance or a subset of
instances. For example, the first row represents a subset of instances

2http://cogcomp.cs.illinois.edu/Data/QA/QC/

whose true class is ‘DESC’ (descriptions). Each column represents a
neuron. Each cell (circle) is a neuron activation value for a subset. A
darker circle indicates stronger activation. This matrix view exposes
the hidden relationships between neurons and data. For instance, a user
may find out a certain neuron is highly activated by instances whose
true class is ‘LOC’.

Flexible subset definition. In ACTIVIS, users can flexibly define
instance subsets. A subset can be specified using multiple properties
of the instances, in many different ways. Example properties include
raw data attributes, labels, features, textual content, output scores, and
predicted label. Our datasets consist of instances with many features
and a combination of different types of data. Flexible subset definition
enables users to analyze models from different angles. For example,
for instances representing text documents, the user may create a subset
for documents that contains a specific phrase. For instances contain-
ing numerical features, users can specify conditions, using operations
similar to relational selections in databases (e.g., age > 20, topic =
’sports’). By default, a subset is created for each class (e.g., a subset
for the ‘DESC’ class).

Sorting to reveal patterns. The difficulty in recognizing patterns
increases with the number of neurons. ACTIVIS allows users to sort
neurons (i.e., columns) by their activation values. For example, in
Fig. 3, the neurons are sorted based on the average activation values
for the class ‘LOC’. Sorting facilitates activation comparison and helps
reveal patterns, such as spotting instances that are positively correlated
with their true class in terms of the activation pattern (e.g., instances
#94 and #30 correlate with the ‘LOC’ class in Fig. 3).

2-D projection of activations. To help users visually examine in-
stance subsets, ACTIVIS provides a 2-D projected view of instance ac-
tivations. Projection of high-dimensional data into 2-D space has been
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Fig. 6. Version 1 of ACTIVIS, showing an instance’s neuron activation
strengths, encoded using color intensity. A main drawback of this design
was that users could only see the activations for a single instance at a
time. Activation comparison across multiple instances was not possible.

Fig. 7. Version 2 of ACTIVIS, which unified instance- and subset-level
activation visualization. This design was too visually overwhelming and
did not scale to complex models, as it allocated a matrix block for each
operator; a complex model could have close to a hundred operators.

5 INFORMED DESIGN THROUGH ITERATIONS

The current design of ACTIVIS is the result of twelve months of inves-
tigation and development effort through many iterations.

Unifying instances and subsets to facilitate comparison of mul-
tiple instances. The first version of ACTIVIS, depicted in Fig. 6,
visualizes activations for all layers (each column group represents a
single layer). A main drawback of this design is that users can only
see the activations for a single instance at a time; they cannot compare
multiple instances’ activations. While, for the subsets, we use an ap-
proach similar to ACTIVIS’s design (each dot represents the average
values for the subset), we encode activations for a given instance using
background color (here, in green). This means that the visualization
cannot support activation comparison across multiple instances. This
finding prompted us to unify the treatment for instances and subsets to
enable comparison across them. Fig. 7 shows our next design iteration
that implements this idea.

Separating program and data to handle complex models. Al-
though the updated version (Fig. 7) shows activations for multiple
instances, which helps users explore more information at once, it be-
comes visually too overwhelming when visualizing large, complex
models. Some engineers expressed concern that this design might not
generalize well to different models. Also, engineers are often interested
in only a few variable nodes, rather than looking at many variable
nodes. Therefore, we decided to separate the visualization of the model
architecture and the activations for a specific variable node.

Presenting 2-D projection of instances. One researcher suggested
that ACTIVIS should provide more detail for each neuron, in addition
to average activations. Our first solution was to present statistics (e.g.,
variance) and distributions for each neuron. However, some researchers
cautioned that this approach could be misleading, because these sum-
maries might not fully capture high-dimensional activation patterns.
This prompted us to add the projected view (t-SNE), which enabled
users to better explore the high-dimensional patterns (see Fig. 4).

6 CASE STUDIES & USAGE SCENARIOS

To better understand how ACTIVIS may help Facebook machine learn-
ing users with their interpretation of deep neural network models, we

recruited three Facebook engineers and data scientists to use the latest
version of ACTIVIS to explore text classification models relevant to
their work. We summarize key observations from these studies to high-
light ACTIVIS’s benefits (Sect. 6.1). Then, based on observations and
feedback from these users and others who participated in our earlier
participatory design sessions, we present example usage scenarios for
ranking models to illustrate how ACTIVIS would generalize (Sect. 6.2).

6.1 Case Studies: Exploring Text Classification Models
with ACTIVIS

6.1.1 Participants and Study Protocol
We recruited three Facebook engineers and data scientists to use our
tools (their names substituted for privacy):

Bob is a software engineer who has expertise in natural language
processing. He is experimenting with applying text classification
models to some Facebook experiences, such as for detecting intents
from a text snippet, like understanding when the user may want to go
somewhere [2]. For example, suppose a user writes “I need a ride”,
Bob may want the models to discover if the user needs transportation
to reach the destination. He is interested in selecting the best models
based on experimenting with many parameters and a few different
models, as in [16, 19].

Dave is a relatively new software engineer. Like Bob, he is also
working with text classification models for user intent detection, but
unlike Bob, he is more interested in preparing training datasets from
large collections of databases.

Carol is a data scientist who holds a Ph.D. in the area of natural
language processing. Unlike Bob and Dave, she is working with
many different machine learning tasks, focusing on textual data.

We had a 60-minute session with each of the three participants.
For the first 20 minutes, we asked them a few questions about their
typical workflows, and how they train models and interpret results.
Then we introduced them to ACTIVIS by describing its components.
The participants used their own datasets and models, available from
FBLearner Flow. After the introduction, the participants used ACTIVIS
while thinking aloud. They also gave us feedback on how we could
further improve ACTIVIS. We recorded audio during the entire session
and video for the last part.

6.1.2 Key Observations
We summarize our key observations from interacting with the three
participants into the following three themes, each highlighting how our
tool helped them with the analysis.

Spot-checking models with user-defined instances and subsets.
ACTIVIS supports flexible subset definition. This feature was devel-
oped based on the common model development pattern where prac-
titioners often curate “test cases” that they are familiar with, and for
which they know their associated labels. For example, a text snippet
“Let’s take a cab” should be classified as a positive class of detecting
transportation-related intent. Both Bob and Dave indeed found this
feature useful (i.e., they also had their own “test cases”), and they appre-
ciated the ability to specify and use their own cases. This would help
them better understand whether their models are working well, by com-
paring the activation patterns of their own instances with those of other
instances in the positive or negative classes. Bob’s usage of ACTIVIS
and comments echo and support the need for subset-level visualization
and exploration, currently inadequately supported by existing tools.

Graph overview as a crucial entry point to model exploration.
From our early participatory design sessions, we learned that AC-
TIVIS’s graph overview was important for practitioners who work with
complex models whose tasks only require them to focus on specific
components of the models. Bob, who works with many different varia-
tions of text classification models, has known that the model he works
with mainly uses convolution operations and was curious to see how
the convolution works in detail. When he launched ACTIVIS, he first
examined the model architecture around the convolution operators us-
ing the computation graph panel. He appreciated that he could see how

Fig. 5. Users can simultaneously visualize and compare multiple layers’
activations. Shown here, from top to bottom, are: the second-to-last
hidden layer, the last hidden layer, and the output layer. Their projected
views show that as instances flow through the network from input (top)
to output (bottom), their activation patterns gradually become more dis-
cernible and clustered (in projected view).

is added to the activation view presenting the activation values for the
selected instance. When users’ mouse leaves the box, the added row
disappears. To make a row persistent, users can simply click the box.
In a similar fashion, users can add many rows by clicking the instance
boxes. Then, they can compare activations for multiple instances and
also compare those for instances with those for groups of instances.

4.4 Deploying ACTIVIS: Scaling to Industry-scale Datasets
and Models

We have deployed ACTIVIS on Facebook’s machine learning platform.
Developers who want to use ACTIVIS for their model can easily do
so by adding only a few lines of code, which instructs their models’
training process to generate information needed for ACTIVIS’s visu-
alization. Once model training has completed, the FBLearner Flow
interface provides the user with a link to ACTIVIS to visualize and
explore the model. The link opens in a new web browser window.

ACTIVIS is designed to work with classification tasks that use deep
neural network models. As complex models and large datasets are
commonly used at Facebook, it is important that ACTIVIS be scalable
and flexible, so that engineers can easily adopt ACTIVIS for their mod-
els. This section describes our approaches to building and deploying
ACTIVIS on FBLearner, Facebook’s machine learning platform.

4.4.1 Generalizing to Different Models and Data Types
One of our main goals is to support as many different kinds of data
types and models as what FBLearner currently does (e.g., images, text,
numerical). The key challenge is to enable existing deployed models to
generate data needed for ACTIVIS with as little modification as possi-
ble. Without careful thinking, we would have to add a large amount of
model-specific code, to enable ACTIVIS to work with different models.
To tackle this challenge, we modularize the data generation process
and define API functions for model developers so that they can simply
call them in their code, to activate ACTIVIS for their models. In prac-
tice, for a developer to use ACTIVIS for a model, only three function
calls are needed to be added (i.e., calling the preprocess, process, and
postprocess methods). For example, developers can specify a list of
variable nodes that users can explore, as an argument of the preprocess

function (described in detail in Sect. 4.4.2). Furthermore, developers
can leverage user-defined functions to specify how subsets are defined
in ACTIVIS, a capability particularly helpful for the more abstract,
unstructured data types, such as image and audio. For example, devel-
opers may leverage the output of an object recognition algorithm that
detects objects (e.g., cats, dogs) to define image subsets (e.g., subset of
images that contain dogs).

4.4.2 Scaling to Large Data and Models
ACTIVIS addresses visual and computational scalability challenges
through multiple complementary approaches. Some of them were intro-
duced in earlier sections (e.g., Sect. 4.2), such as ActiVis’s overarching
subset-based analysis, and the simultaneous use of neuron matrix (for
individual neuron inspection) and projected view (in case of many
neurons). We elaborate on some of our other key ideas below.

Selective precomputation for variable nodes of interest.
Industry-scale models often consist of a large number operations (i.e.,
variable nodes), up to hundreds. Although any variable node can be
visualized in the activation visualization, if we compute activations
for all of them, it will require significant computation time and space
for storing the data. We learned from our discussion with experts and
design sessions with potential users that it is typical for only a few vari-
able nodes in a model to be of particular interest (e.g., last hidden layer
in CNN). Therefore, instead of generating activations for all variable
nodes, we let model developers specify their own default set of variable
nodes. The model developers can simply specify them as an argument
of the preprocess method. To explore variable nodes not included in
the default set, a user can add them by specifying the variable nodes in
the FBLearner Flow interface. Such nodes will then be available in the
computation graph (highlighted in yellow).

User-guided sampling and visual instance selection. For billion-
scale datasets, it is undesirable to display all data points in the instance
selection panel. Furthermore, we learned from our design sessions that
researchers and engineers are primarily interested in a small number
of representative examples, such as “test cases” that they have curated
(e.g., instances that should be labeled as Class ‘LOC’ by all well-
performing models). To meet such needs, by default, we present a
sample of instances in the interface (around 1,000), which meet the
practical needs of most Facebook engineers. In addition, users may
also guide the sampling to include arbitrary examples that they specify
(e.g., their test cases).

Computing neuron activation matrix for large datasets. The
main computational challenge of ACTIVIS is in computing the neuron
activation matrix over large datasets. Here, we describe our scalable ap-
proach whose time complexity is linear in the number of data instances.
We first create a matrix S (#instances × #subsets) that describes all
instance-to-subset mappings. Once a model predicts labels for in-
stances, it produces an activation matrix A (#instances × #neurons)
for each variable node. By multiplying these two matrices (i.e., ST A),
followed by normalization, we obtain a matrix containing all subsets’
average neuron activation values, which are visualized in the neuron
matrix view. As the number of instances dominates, the above computa-
tion’s time complexity is linear in the number of instances. In practice,
this computation roughly takes the same amount of time as testing a
model. We have tested ACTIVIS with many datasets (e.g., one with 5
million training instances). ACTIVIS can now scale to any data sizes
that FBLearner supports (e.g., billion-scale or larger).

4.4.3 Implementation Details
The visualization and interactions are implemented mainly with Re-
act.js.4 We additionally use a few D3.js V4 components.5 The computa-
tion graph is visualized using Dagre,6 a JavaScript library for rendering
directed graphs. All the backend code is implemented in Python (in-
cluding scikit-learn7 for t-SNE) and the activation data generated from
backend are passed to the interface using the JSON format.

4https://facebook.github.io/react/
5https://d3js.org/
6https://github.com/cpettitt/dagre
7http://scikit-learn.org/
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Fig. 6. Version 1 of ACTIVIS, showing an instance’s neuron activation
strengths, encoded using color intensity. A main drawback of this design
was that users could only see the activations for a single instance at a
time. Activation comparison across multiple instances was not possible.

Fig. 7. Version 2 of ACTIVIS, which unified instance- and subset-level
activation visualization. This design was too visually overwhelming and
did not scale to complex models, as it allocated a matrix block for each
operator; a complex model could have close to a hundred operators.

5 INFORMED DESIGN THROUGH ITERATIONS

The current design of ACTIVIS is the result of twelve months of inves-
tigation and development effort through many iterations.

Unifying instances and subsets to facilitate comparison of mul-
tiple instances. The first version of ACTIVIS, depicted in Fig. 6,
visualizes activations for all layers (each column group represents a
single layer). A main drawback of this design is that users can only
see the activations for a single instance at a time; they cannot compare
multiple instances’ activations. While, for the subsets, we use an ap-
proach similar to ACTIVIS’s design (each dot represents the average
values for the subset), we encode activations for a given instance using
background color (here, in green). This means that the visualization
cannot support activation comparison across multiple instances. This
finding prompted us to unify the treatment for instances and subsets to
enable comparison across them. Fig. 7 shows our next design iteration
that implements this idea.

Separating program and data to handle complex models. Al-
though the updated version (Fig. 7) shows activations for multiple
instances, which helps users explore more information at once, it be-
comes visually too overwhelming when visualizing large, complex
models. Some engineers expressed concern that this design might not
generalize well to different models. Also, engineers are often interested
in only a few variable nodes, rather than looking at many variable
nodes. Therefore, we decided to separate the visualization of the model
architecture and the activations for a specific variable node.

Presenting 2-D projection of instances. One researcher suggested
that ACTIVIS should provide more detail for each neuron, in addition
to average activations. Our first solution was to present statistics (e.g.,
variance) and distributions for each neuron. However, some researchers
cautioned that this approach could be misleading, because these sum-
maries might not fully capture high-dimensional activation patterns.
This prompted us to add the projected view (t-SNE), which enabled
users to better explore the high-dimensional patterns (see Fig. 4).

6 CASE STUDIES & USAGE SCENARIOS

To better understand how ACTIVIS may help Facebook machine learn-
ing users with their interpretation of deep neural network models, we

recruited three Facebook engineers and data scientists to use the latest
version of ACTIVIS to explore text classification models relevant to
their work. We summarize key observations from these studies to high-
light ACTIVIS’s benefits (Sect. 6.1). Then, based on observations and
feedback from these users and others who participated in our earlier
participatory design sessions, we present example usage scenarios for
ranking models to illustrate how ACTIVIS would generalize (Sect. 6.2).

6.1 Case Studies: Exploring Text Classification Models
with ACTIVIS

6.1.1 Participants and Study Protocol
We recruited three Facebook engineers and data scientists to use our
tools (their names substituted for privacy):

Bob is a software engineer who has expertise in natural language
processing. He is experimenting with applying text classification
models to some Facebook experiences, such as for detecting intents
from a text snippet, like understanding when the user may want to go
somewhere [2]. For example, suppose a user writes “I need a ride”,
Bob may want the models to discover if the user needs transportation
to reach the destination. He is interested in selecting the best models
based on experimenting with many parameters and a few different
models, as in [16, 19].

Dave is a relatively new software engineer. Like Bob, he is also
working with text classification models for user intent detection, but
unlike Bob, he is more interested in preparing training datasets from
large collections of databases.

Carol is a data scientist who holds a Ph.D. in the area of natural
language processing. Unlike Bob and Dave, she is working with
many different machine learning tasks, focusing on textual data.

We had a 60-minute session with each of the three participants.
For the first 20 minutes, we asked them a few questions about their
typical workflows, and how they train models and interpret results.
Then we introduced them to ACTIVIS by describing its components.
The participants used their own datasets and models, available from
FBLearner Flow. After the introduction, the participants used ACTIVIS
while thinking aloud. They also gave us feedback on how we could
further improve ACTIVIS. We recorded audio during the entire session
and video for the last part.

6.1.2 Key Observations
We summarize our key observations from interacting with the three
participants into the following three themes, each highlighting how our
tool helped them with the analysis.

Spot-checking models with user-defined instances and subsets.
ACTIVIS supports flexible subset definition. This feature was devel-
oped based on the common model development pattern where prac-
titioners often curate “test cases” that they are familiar with, and for
which they know their associated labels. For example, a text snippet
“Let’s take a cab” should be classified as a positive class of detecting
transportation-related intent. Both Bob and Dave indeed found this
feature useful (i.e., they also had their own “test cases”), and they appre-
ciated the ability to specify and use their own cases. This would help
them better understand whether their models are working well, by com-
paring the activation patterns of their own instances with those of other
instances in the positive or negative classes. Bob’s usage of ACTIVIS
and comments echo and support the need for subset-level visualization
and exploration, currently inadequately supported by existing tools.

Graph overview as a crucial entry point to model exploration.
From our early participatory design sessions, we learned that AC-
TIVIS’s graph overview was important for practitioners who work with
complex models whose tasks only require them to focus on specific
components of the models. Bob, who works with many different varia-
tions of text classification models, has known that the model he works
with mainly uses convolution operations and was curious to see how
the convolution works in detail. When he launched ACTIVIS, he first
examined the model architecture around the convolution operators us-
ing the computation graph panel. He appreciated that he could see how

Fig. 5. Users can simultaneously visualize and compare multiple layers’
activations. Shown here, from top to bottom, are: the second-to-last
hidden layer, the last hidden layer, and the output layer. Their projected
views show that as instances flow through the network from input (top)
to output (bottom), their activation patterns gradually become more dis-
cernible and clustered (in projected view).

is added to the activation view presenting the activation values for the
selected instance. When users’ mouse leaves the box, the added row
disappears. To make a row persistent, users can simply click the box.
In a similar fashion, users can add many rows by clicking the instance
boxes. Then, they can compare activations for multiple instances and
also compare those for instances with those for groups of instances.

4.4 Deploying ACTIVIS: Scaling to Industry-scale Datasets
and Models

We have deployed ACTIVIS on Facebook’s machine learning platform.
Developers who want to use ACTIVIS for their model can easily do
so by adding only a few lines of code, which instructs their models’
training process to generate information needed for ACTIVIS’s visu-
alization. Once model training has completed, the FBLearner Flow
interface provides the user with a link to ACTIVIS to visualize and
explore the model. The link opens in a new web browser window.

ACTIVIS is designed to work with classification tasks that use deep
neural network models. As complex models and large datasets are
commonly used at Facebook, it is important that ACTIVIS be scalable
and flexible, so that engineers can easily adopt ACTIVIS for their mod-
els. This section describes our approaches to building and deploying
ACTIVIS on FBLearner, Facebook’s machine learning platform.

4.4.1 Generalizing to Different Models and Data Types
One of our main goals is to support as many different kinds of data
types and models as what FBLearner currently does (e.g., images, text,
numerical). The key challenge is to enable existing deployed models to
generate data needed for ACTIVIS with as little modification as possi-
ble. Without careful thinking, we would have to add a large amount of
model-specific code, to enable ACTIVIS to work with different models.
To tackle this challenge, we modularize the data generation process
and define API functions for model developers so that they can simply
call them in their code, to activate ACTIVIS for their models. In prac-
tice, for a developer to use ACTIVIS for a model, only three function
calls are needed to be added (i.e., calling the preprocess, process, and
postprocess methods). For example, developers can specify a list of
variable nodes that users can explore, as an argument of the preprocess

function (described in detail in Sect. 4.4.2). Furthermore, developers
can leverage user-defined functions to specify how subsets are defined
in ACTIVIS, a capability particularly helpful for the more abstract,
unstructured data types, such as image and audio. For example, devel-
opers may leverage the output of an object recognition algorithm that
detects objects (e.g., cats, dogs) to define image subsets (e.g., subset of
images that contain dogs).

4.4.2 Scaling to Large Data and Models
ACTIVIS addresses visual and computational scalability challenges
through multiple complementary approaches. Some of them were intro-
duced in earlier sections (e.g., Sect. 4.2), such as ActiVis’s overarching
subset-based analysis, and the simultaneous use of neuron matrix (for
individual neuron inspection) and projected view (in case of many
neurons). We elaborate on some of our other key ideas below.

Selective precomputation for variable nodes of interest.
Industry-scale models often consist of a large number operations (i.e.,
variable nodes), up to hundreds. Although any variable node can be
visualized in the activation visualization, if we compute activations
for all of them, it will require significant computation time and space
for storing the data. We learned from our discussion with experts and
design sessions with potential users that it is typical for only a few vari-
able nodes in a model to be of particular interest (e.g., last hidden layer
in CNN). Therefore, instead of generating activations for all variable
nodes, we let model developers specify their own default set of variable
nodes. The model developers can simply specify them as an argument
of the preprocess method. To explore variable nodes not included in
the default set, a user can add them by specifying the variable nodes in
the FBLearner Flow interface. Such nodes will then be available in the
computation graph (highlighted in yellow).

User-guided sampling and visual instance selection. For billion-
scale datasets, it is undesirable to display all data points in the instance
selection panel. Furthermore, we learned from our design sessions that
researchers and engineers are primarily interested in a small number
of representative examples, such as “test cases” that they have curated
(e.g., instances that should be labeled as Class ‘LOC’ by all well-
performing models). To meet such needs, by default, we present a
sample of instances in the interface (around 1,000), which meet the
practical needs of most Facebook engineers. In addition, users may
also guide the sampling to include arbitrary examples that they specify
(e.g., their test cases).

Computing neuron activation matrix for large datasets. The
main computational challenge of ACTIVIS is in computing the neuron
activation matrix over large datasets. Here, we describe our scalable ap-
proach whose time complexity is linear in the number of data instances.
We first create a matrix S (#instances × #subsets) that describes all
instance-to-subset mappings. Once a model predicts labels for in-
stances, it produces an activation matrix A (#instances × #neurons)
for each variable node. By multiplying these two matrices (i.e., ST A),
followed by normalization, we obtain a matrix containing all subsets’
average neuron activation values, which are visualized in the neuron
matrix view. As the number of instances dominates, the above computa-
tion’s time complexity is linear in the number of instances. In practice,
this computation roughly takes the same amount of time as testing a
model. We have tested ACTIVIS with many datasets (e.g., one with 5
million training instances). ACTIVIS can now scale to any data sizes
that FBLearner supports (e.g., billion-scale or larger).

4.4.3 Implementation Details
The visualization and interactions are implemented mainly with Re-
act.js.4 We additionally use a few D3.js V4 components.5 The computa-
tion graph is visualized using Dagre,6 a JavaScript library for rendering
directed graphs. All the backend code is implemented in Python (in-
cluding scikit-learn7 for t-SNE) and the activation data generated from
backend are passed to the interface using the JSON format.

4https://facebook.github.io/react/
5https://d3js.org/
6https://github.com/cpettitt/dagre
7http://scikit-learn.org/
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model training parameters are used in the model, which helped him
develop better understanding of the internal working mechanism of
the models. For example, he found how and where padding are used
in the models by exploring the graph [7]. After he got a better sense
about how the model function around the convolution operators, he
examined the activation patterns of the convolution output layer. This
example shows that the graph overview is important for understanding
complex architectures and locating parts that are relevant to the user’s
tasks. In other words, the graph serves as an important entry point of
Bob’s analysis. Existing tools assuming user familiarity with models
may not hold in real-world large-scale deployment scenarios.

Visual exploration of activation patterns for evaluating model
performances and for debugging hints. One of the main components
of ACTIVIS is the visual representation of activations that helps users
easily recognize patterns and anomalies. As Carol interacted with the
visualization, she gleaned a number of new insights, and a few hints
for how to debug deep learning models in general. She interactively
selected many different instances and added them to the neuron activa-
tion matrix to see how they activated neurons. She found out that the
activation patterns for some instances are unexpectedly similar, even
though the textual content of the instances seem very different. Also,
she spotted that some neurons were not activated at all. She hypothe-
sized that the model could be further improved by changing some of
the training parameters, so she decided to modify them to improve the
model. While the neuron activation panel helps Carol find models that
can be further improved, Bob found some interesting patterns from the
activation patterns for the convolution output layer. He quickly found
out that some particular words are highly activated while some other
words, which he thought can be highly activated, do not respond much.
This helped him identify words that are potentially more effective for
classification. The examples above demonstrate the power of visual
exploration. ACTIVIS helps users recognize patterns by interacting
with instances and instance subsets they are familiar with.

6.2 Usage Scenario: Exploring Ranking Models

As there are many potential uses for ACTIVIS at Facebook, we also
discussed with a number of researchers and engineers at different teams
to understand how they may adopt ACTIVIS. Below, we present a
usage scenario of ACTIVIS for exploring ranking models, based on
our discussion. We note the scenario strongly resembles others that we
have discussed so far; this is encouraging because enabling ACTIVIS
to generalize across teams and models is one of our main goals.

Alice is a research scientist working with ranking models, one of the
important machine learning tasks in industry. The ranking models can
be used to recommend relevant content to users by analyzing a large
number of numerical features extracted from databases [5, 15]. Alice is
experimenting with deep neural network models to evaluate how these
models work for a number of ranking tasks. She often performs subset-
based analysis when examining model performance, such as defining
subsets based on categories of page content. Subset-based analysis
is essential for Alice, because she works with very large amount of
training data (billions of data points, thousands of features). ACTIVIS’s
instance-based exploration feature is not yet helpful for Alice, since
she is still familiarizing herself with the data and has not identified
instances that she would like to use for spot-checking the model. In
ACTIVIS, Alice is free to use either or both of instance- and subset-
based exploration. For new, unfamiliar datasets, Alice finds it much
easier to start her analysis from the high level, then drill down into
subsets, using attributes or features.

Alice has trained a fully-connected deep neural network model
with some default parameters. When she launches ACTIVIS, she first
examines the output layer to see how the activation patterns for the
positive and negative classes may be different. To her surprise, they
look similar. Furthermore, by inspecting the neuron activation matrix
view, she realizes that many neurons are not activated at all — their
activation values are close to 0. This signals that the model may be
using more neurons than necessary. So, she decided to train additional
models with different parameter combinations (e.g., reduce neurons) to
relieve the above issue.

The performances of some models indeed improve. Happy with
this improvement, Alice moves on to perform deeper analysis of the
trained models. She first creates a number of instance subsets by
using features. She utilizes 50 top features known to be important
for ranking. For categorical features, she defines a subset for each
category value. For numerical features, she quantizes them into a small
number of subsets based on the feature value distribution. ACTIVIS’s
neuron activation matrix view visualizes how the subsets that Alice
has defined are activating the neurons. Maximizing the matrix view to
take up the entire screen (and minimizing the computation graph view),
Alice visually explores the activation matrix and identifies a number
of informative, distinguishing activation patterns. For example, one
neuron is highly activated for a single subset, and much less so for
other subsets, suggesting that neuron’s potential predictive power. With
ACTIVIS, Alice can train models that perform well and understand
how the models capture the structure of datasets by examining the
relationships between features and neurons.

7 DISCUSSION AND FUTURE WORK

Visualizing gradients. Examining gradients is one of the effective
ways to explore deep learning models [10, 18]. It is straightforward to
extend ACTIVIS to visualize gradients by replacing activations with
gradients. While activation represents forward data flow from input
to output layers, gradient represents backward flow. Gradients would
help developers to locate neurons or datasets where the models do not
perform well.

Real-time subset definition. For ACTIVIS to work with a new
subset, it needs to load the dataset into RAM to check which instances
satisfy the subset’s conditions. Currently, it is not of high priority for
the above process to be performed in real time, because users often
have pre-determined subsets to explore. We plan to integrate dynamic
filtering and searching capabilities, to speed up both subset definition
and instance selection.

Automatic discovery of interesting subsets. With ACTIVIS, users
can flexibly specify subsets in infinitely many ways. One of the engi-
neers commented that ACTIVIS could help suggest interesting subsets
for exploration, based on heuristics or measures. For example, for text
datasets, such a subset could include phrases whose activation patterns
are very similar or different to those for a given instance or class.

Supporting input-dependent models. An interesting research di-
rection is to extend ACTIVIS to support models that contain variable
nodes whose number of neurons changes depending on the input (e.g.,
the number of words in a document), and to study the relationships
between neurons and subsets for such cases.

Understanding how ACTIVIS informs model training. We plan
to conduct a longitudinal study to better understand ACTIVIS’s impact
on Facebook’s machine learning workflows, such as how ACTIVIS may
inform the model training process. For example, a sparse neuron matrix
may indicate that a model is using more neurons than needed, which
could inform engineers on their decisions for hyperparameter tuning.

8 CONCLUSION

We presented ACTIVIS, a visual analytics system for deep neural net-
work models. We conducted participatory design session with over 15
researchers and engineers across many teams at Facebook to identify
key design challenges, and based on them, we distilled three main de-
sign goals: (1) unifying instance- and subset-level exploration; (2) tight
integration of model architecture and localized activation inspection;
and (3) scaling to industry-scale data and models. ACTIVIS has been
deployed on Facebook’s machine learning platform. We presented
case studies with Facebook engineers and data scientists, and usage
scenarios of how ACTIVIS may be used with different applications.
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model training parameters are used in the model, which helped him
develop better understanding of the internal working mechanism of
the models. For example, he found how and where padding are used
in the models by exploring the graph [7]. After he got a better sense
about how the model function around the convolution operators, he
examined the activation patterns of the convolution output layer. This
example shows that the graph overview is important for understanding
complex architectures and locating parts that are relevant to the user’s
tasks. In other words, the graph serves as an important entry point of
Bob’s analysis. Existing tools assuming user familiarity with models
may not hold in real-world large-scale deployment scenarios.

Visual exploration of activation patterns for evaluating model
performances and for debugging hints. One of the main components
of ACTIVIS is the visual representation of activations that helps users
easily recognize patterns and anomalies. As Carol interacted with the
visualization, she gleaned a number of new insights, and a few hints
for how to debug deep learning models in general. She interactively
selected many different instances and added them to the neuron activa-
tion matrix to see how they activated neurons. She found out that the
activation patterns for some instances are unexpectedly similar, even
though the textual content of the instances seem very different. Also,
she spotted that some neurons were not activated at all. She hypothe-
sized that the model could be further improved by changing some of
the training parameters, so she decided to modify them to improve the
model. While the neuron activation panel helps Carol find models that
can be further improved, Bob found some interesting patterns from the
activation patterns for the convolution output layer. He quickly found
out that some particular words are highly activated while some other
words, which he thought can be highly activated, do not respond much.
This helped him identify words that are potentially more effective for
classification. The examples above demonstrate the power of visual
exploration. ACTIVIS helps users recognize patterns by interacting
with instances and instance subsets they are familiar with.

6.2 Usage Scenario: Exploring Ranking Models

As there are many potential uses for ACTIVIS at Facebook, we also
discussed with a number of researchers and engineers at different teams
to understand how they may adopt ACTIVIS. Below, we present a
usage scenario of ACTIVIS for exploring ranking models, based on
our discussion. We note the scenario strongly resembles others that we
have discussed so far; this is encouraging because enabling ACTIVIS
to generalize across teams and models is one of our main goals.

Alice is a research scientist working with ranking models, one of the
important machine learning tasks in industry. The ranking models can
be used to recommend relevant content to users by analyzing a large
number of numerical features extracted from databases [5, 15]. Alice is
experimenting with deep neural network models to evaluate how these
models work for a number of ranking tasks. She often performs subset-
based analysis when examining model performance, such as defining
subsets based on categories of page content. Subset-based analysis
is essential for Alice, because she works with very large amount of
training data (billions of data points, thousands of features). ACTIVIS’s
instance-based exploration feature is not yet helpful for Alice, since
she is still familiarizing herself with the data and has not identified
instances that she would like to use for spot-checking the model. In
ACTIVIS, Alice is free to use either or both of instance- and subset-
based exploration. For new, unfamiliar datasets, Alice finds it much
easier to start her analysis from the high level, then drill down into
subsets, using attributes or features.

Alice has trained a fully-connected deep neural network model
with some default parameters. When she launches ACTIVIS, she first
examines the output layer to see how the activation patterns for the
positive and negative classes may be different. To her surprise, they
look similar. Furthermore, by inspecting the neuron activation matrix
view, she realizes that many neurons are not activated at all — their
activation values are close to 0. This signals that the model may be
using more neurons than necessary. So, she decided to train additional
models with different parameter combinations (e.g., reduce neurons) to
relieve the above issue.

The performances of some models indeed improve. Happy with
this improvement, Alice moves on to perform deeper analysis of the
trained models. She first creates a number of instance subsets by
using features. She utilizes 50 top features known to be important
for ranking. For categorical features, she defines a subset for each
category value. For numerical features, she quantizes them into a small
number of subsets based on the feature value distribution. ACTIVIS’s
neuron activation matrix view visualizes how the subsets that Alice
has defined are activating the neurons. Maximizing the matrix view to
take up the entire screen (and minimizing the computation graph view),
Alice visually explores the activation matrix and identifies a number
of informative, distinguishing activation patterns. For example, one
neuron is highly activated for a single subset, and much less so for
other subsets, suggesting that neuron’s potential predictive power. With
ACTIVIS, Alice can train models that perform well and understand
how the models capture the structure of datasets by examining the
relationships between features and neurons.

7 DISCUSSION AND FUTURE WORK

Visualizing gradients. Examining gradients is one of the effective
ways to explore deep learning models [10, 18]. It is straightforward to
extend ACTIVIS to visualize gradients by replacing activations with
gradients. While activation represents forward data flow from input
to output layers, gradient represents backward flow. Gradients would
help developers to locate neurons or datasets where the models do not
perform well.

Real-time subset definition. For ACTIVIS to work with a new
subset, it needs to load the dataset into RAM to check which instances
satisfy the subset’s conditions. Currently, it is not of high priority for
the above process to be performed in real time, because users often
have pre-determined subsets to explore. We plan to integrate dynamic
filtering and searching capabilities, to speed up both subset definition
and instance selection.

Automatic discovery of interesting subsets. With ACTIVIS, users
can flexibly specify subsets in infinitely many ways. One of the engi-
neers commented that ACTIVIS could help suggest interesting subsets
for exploration, based on heuristics or measures. For example, for text
datasets, such a subset could include phrases whose activation patterns
are very similar or different to those for a given instance or class.

Supporting input-dependent models. An interesting research di-
rection is to extend ACTIVIS to support models that contain variable
nodes whose number of neurons changes depending on the input (e.g.,
the number of words in a document), and to study the relationships
between neurons and subsets for such cases.

Understanding how ACTIVIS informs model training. We plan
to conduct a longitudinal study to better understand ACTIVIS’s impact
on Facebook’s machine learning workflows, such as how ACTIVIS may
inform the model training process. For example, a sparse neuron matrix
may indicate that a model is using more neurons than needed, which
could inform engineers on their decisions for hyperparameter tuning.

8 CONCLUSION

We presented ACTIVIS, a visual analytics system for deep neural net-
work models. We conducted participatory design session with over 15
researchers and engineers across many teams at Facebook to identify
key design challenges, and based on them, we distilled three main de-
sign goals: (1) unifying instance- and subset-level exploration; (2) tight
integration of model architecture and localized activation inspection;
and (3) scaling to industry-scale data and models. ACTIVIS has been
deployed on Facebook’s machine learning platform. We presented
case studies with Facebook engineers and data scientists, and usage
scenarios of how ACTIVIS may be used with different applications.
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