
Polonium: Tera-Scale Graph Mining and Inference

for Malware Detection

Duen Horng Chau
Carnegie Mellon University

dchau@cs.cmu.edu

Carey Nachenberg
Symantec

cnachenberg@symantec.com

Je↵rey Wilhelm
Symantec

je↵rey wilhelm@symantec.com

Adam Wright
Symantec

adam wright@symantec.com

Christos Faloutsos
Carnegie Mellon University

christos@cs.cmu.edu

Abstract

We present Polonium, a novel Symantec technology
that detects malware through large-scale graph infer-
ence. Based on the scalable Belief Propagation algo-
rithm, Polonium infers every file’s reputation, flagging
files with low reputation as malware. We evaluated
Polonium with a billion-node graph constructed from
the largest file submissions dataset ever published (60
terabytes). Polonium attained a high true positive rate

of 87% in detecting malware; in the field, Polonium
lifted the detection rate of existing methods by 10 ab-

solute percentage points. We detail Polonium’s design
and implementation features instrumental to its success.
Polonium has served 120 million people and helped an-
swer more than one trillion queries for file reputation.

1 Introduction and Motivation.

Thanks to ready availability of computers and ubiq-
uitous access to high-speed Internet connections, mal-
ware has been rapidly gaining prevalence over the past
decade, spreading and infecting computers around the
world at an unprecedented rate. In 2008, Symantec,
a global security software provider, reported that the
release rate of malicious code and other unwanted pro-
grams may be exceeding that of legitimate software ap-
plications [1]. This suggests traditional signature-based
malware detection solutions will face great challenges
in the years to come, as they will likely be outpaced
by the threats created by malware authors. To put
this into perspective, Symantec reported that they re-
leased nearly 1.8 million virus signatures in 2008, re-
sulting in 200 million detections per month in the field
[1]. While this is a large number of blocked malware,
a great deal more malware (so-called “zero day” mal-
ware [2]) is being generated or mutated for each vic-
tim or small number of victims, which tends to evade

Figure 1: Overview of the Polonium technology

traditional signature-based antivirus scanners. This has
prompted the software security industry to rethink their
approaches in detecting malware, which have heavily re-
lied on refining existing signature-based protection mod-
els pioneered by the industry decades ago. A new, rad-
ical approach to the problem is needed.

The New Polonium Technology. Symantec in-
troduced a protection model that computes a reputation

score for every application that users may encounter,
and protects them from those with poor reputation.
Good applications typically are used by many users,
from known publishers, and have other attributes that
characterize their legitimacy and good reputation. Bad
applications, on the other hand, typically come from

Technical term Synonyms Meaning

Malware Bad software, malicious software,

infected file

Short for malicious software, which includes computer

viruses, Trojan, etc.

Reputation Goodness, belief (when discussing

the Polonium algorithm)

A measure of the goodness; can be used on machines and

files (e.g., file reputation)

File Executable, software, application,

program

A software instance, typically an executable (e.g., .exe) on

the user’s computer

Machine Computer A user’s computer; a user can have multiple computers

File ground truth – File label, good or bad , assigned by human security experts

Known-good file – File with good ground truth

Known-bad file – File with bad ground truth

Unknown file – File with unknown ground truth

Positive (as in true positive) – Malware instance

True Positive TP Malware instance correctly identified as bad

False Positive FP A good file incorrectly identified as bad

Table 1: Malware detection terminology

unknown publishers, have appeared on few computers,
and have other attributes that indicate poor reputation.
The application reputation is computed by leveraging
tens of terabytes of data anonymously contributed by
millions of volunteers using Symantec’s security soft-
ware. These data contain important characteristics of
the applications running on their systems.

In this paper, we describe Polonium, a new mal-
ware detection technology developed at Symantec that
computes application reputation (Figure 1). We de-
signed Polonium to complement (not to replace) ex-
isting malware detection technologies to better protect
computer users from security threats. Polonium stands
for “Propagation Of Leverage Of Network Influence
Unearths Malware”. Our main contributions are:

• Formulating the classic malware detection problem
as a large-scale graph mining and inference prob-
lem, where the goals are to infer the reputation of
any files that computer users may encounter, and
identify the ones with poor reputation (i.e., mal-
ware). [Section 4]

• Providing an algorithm that e�ciently computes
application reputation. In addition, we show how
domain knowledge is readily incorporated into the
algorithm to identify malware. [Section 4]

• Investigating patterns and characteristics observed
in a large anonymized file submissions dataset (60
terabytes), and the machine-file bipartite graph
constructed from it (37 billion edges). [Section 3]

• Performing a large-scale evaluation of Polonium
over a real, billion-node machine-file graph, demon-

strating that our method is fast, e↵ective, and scal-
able. [Section 5]

• Evaluating Polonium in the field, while it is serving
120 million users worldwide. Security experts in-
vestigated Polonium’s e↵ectiveness and found that
it helped significantly lift the detection rate of a
collection of existing proprietary methods by more
than 10 absolute percentage points. To date, Polo-
nium has helped answer more than one trillion

queries for file reputation. [Section 6]

To enhance readability of this paper, we have listed
the malware detection terminology used in this paper
in Table 1. The reader may want to return to this table
throughout this paper for technical terms’ meanings
and synonyms used in various contexts of discussion.
One important note is that we will use the words
“file”, “application”, and “executable” interchangeably
to refer to any piece of software running on a user’s
computer, whose legitimacy (good or bad) we would like
to determine.

2 Background and Our Di↵erences.

To the best of our knowledge, formulating the malware
detection problem as a file reputation inference problem
over a machine-file bipartite graph is novel. Our work
intersects the domains of malware detection and graph
mining, and we briefly review related work below.

A malware instance is a program that has mali-
cious intent [3]. Malware is a general term, often used
to describe a wide variety of malicious code, includ-
ing viruses, worms, Trojan horses, rootkits, spyware,

adware, and more [4]. While some types of malware,
such as viruses, are certainly malicious, some are on the
borderline. For example, some “less harmful” spyware
programs collect the user’s browsing history, while the
“more harmful” ones steal sensitive information such as
credit card numbers and passwords; depending on what
it collects, a spyware can be considered malicious, or
only undesirable.

The focus of our work is not on classifying software
into these, sometimes subtle, malware subcategories.
Rather, our goal is to come up with a new, high-level
method that can automatically identify more malware
instances similar to the ones that have already been
flagged by our company as harmful and that the user
should remove immediately, or would be removed auto-
matically for them by our security products. This dis-
tinction di↵erentiates our work from existing ones that
target specific malware subcategories.

2.1 Research in Malware Detection. There has
been significant research in most malware categories.
Idika and Mathur [5] comprehensively surveyed 45 state-
of-the-art malware detection techniques and broadly di-
vide them into two categories: (1) anomaly-based de-

tection, which detects malware’s deviation from some
presumed “normal” behavior, and (2) signature-based

detection, which detects malware that fits certain pro-
files (or signatures).

There have been an increasing number of re-
searchers who use data mining and machine learning
techniques to detect malware [6]. Kephart and Arnold
[7] were the pioneers in using data mining techniques to
automatically extract virus signatures. Schultz et al. [8]
were among the first who used machine learning algo-
rithms (Naive Bayes and Multi-Naive Bayes) to classify
malware. Tesauro et al. [9] used Neural Network to de-
tect “boot sector viruses”, with over 90% true positive
rate in identifying those viruses, at 15-20% false positive
rate; they had access to fewer than 200 malware sam-
ples. One of the most recent work by Kolter and Maloof
[10] used TFIDF, SVM and decision trees on n-grams.

Most existing research only considers the intrinsic
characteristics of the malware in question, but has not
taken into account those of the machines that have the
malware. Our work makes explicit our strong leverage
in propagating and aggregating machine reputation
information for a file to infer its goodness.

Another important distinction is the size of our real
dataset. Most earlier works trained and tested their
algorithms on file samples in the thousands; we have
access to over 900M files, which allows us to perform
testing in a much larger scale.

2.2 Research in Graph Mining. There has been
extensive work done in graph mining, from authority
propagation to fraud detection, which we will briefly
review below.

Authority & Trust Propagation: Finding author-
itative nodes is the focus of the well-known PageRank
[11] and HITS [12] algorithms; at the high level, they
both consider a webpage as “important” if other “im-
portant” pages point to it. In e↵ect, the importance
of webpages are propagated over hyperlinks connecting
the pages. TrustRank [13] propagates trust over a net-
work of webpages to identify useful webpages from spam
(e.g., phishing sites, adult sites, etc.). Tong et al. [14]
uses Random Walk with Restart to find arbitrary user-
defined subgraphs in an attributed graph. For the case
of propagation of two or more competing labels on a
graph, semi-supervised learning methods [15] have been
used. Also related is the work on relational learning by
Neville et al. [16, 17], which aggregates features across
nodes to classify movies and stocks.

Fraud Detection & Graph Mining : Graph min-
ing methods have been successfully applied in many do-
mains. However, less graph mining research is done in
the malware detection domain. Recent works, such as
[3, 18], focus on detecting malware variants through the
analysis of control-flow graphs of applications.

Fraud detection is a closely related domain. The
NetProbe system [19] models eBay users as a tripar-
tite graph of honest users, fraudsters, and their accom-

plices; NetProbe uses the Belief Propagation algorithm
to identify the subgraphs of fraudsters and accomplices
lurking in the full graph. McGlohon et al. [20] pro-
posed the general SNARE framework based on stan-
dard Belief Propagation [21] for general labeling tasks;
they demonstrated the framework’s success in pinpoint-
ing misstated accounts in some general ledger data.

More generally, [22, 23] use knowledge about the
social network structure to make inference about the key
agents in networks. There is also a wealth of algorithms
for mining frequent subgraphs such as gSpan[24], the
GraphMiner system [25] and related systems [26, 27, 28].

3 Data Description.

Now, we describe the large dataset that the Polonium
technology leverages for inferring file reputation.

Source of Data: Since 2007, tens of millions of world-
wide users of Symantec’s security products volunteered
to submit their application usage information to us, con-
tributing anonymously to help with our e↵ort in com-
puting file reputation. At the end of September 2010,
the total amount of raw submission data has reached

Figure 2: Machine submission distribution (log-log)

110 terabytes. We use a 3-year subset of these data,
from 2007 to early 2010, to describe our method (Sec-
tion 4) and to evaluate it (Section 5).

These raw data are anonymized; we have no access
to personally identifiable information. They span over
60 terabytes of disk space. We collect statistics on both
legitimate and malicious applications running on each
participant’s machine — this application usage data
serves as input to the Polonium system. The total
number of unique files described in the raw data exceeds
900M. These files are executables (e.g., exe, dll), and
throughout this paper, we will simply call them “files”.

After our teams of engineers collected and processed
these raw data, we constructed a huge bipartite graph
from them, with almost one billion nodes and 37 billion

edges. To the best of our knowledge, both the raw
file submission dataset and this graph are the largest
of their kind ever published. We note, however, these
data are only from a subset of our company’s complete
user base.

Each contributing machine is identified by an
anonymizedmachine ID, and each file by a file ID which
is generated based on a cryptographically-secure hash-
ing function.

Machine & File Statistics: A total of 47,840,574
machines have submitted data about files on them. Fig-
ure 2 shows the distributions of the machines’ numbers
of submissions. The two modes approximately corre-
spond to data submitted by two major versions of our
security products, whose data collection mechanisms
di↵er. Data points on the left generally represent new
machines that have not submitted many file reports yet;
with time, these points (machines) gradually move to-
wards the right to join the dominant distribution.

Figure 3: File prevalence distribution, in log-log scale.
Prevalence cuts o↵ at 200,000 which is the maximum
number of machine associations stored for each file.
Singletons are files reported by only one machine.

903,389,196 files have been reported in the dataset.
Figure 3 shows the distribution of the file prevalence,
which follows the Power Law. As shown in the plot,
there are about 850M files that have only been reported
once. We call these files “singletons”. We believes that
these singleton files fall into two di↵erent categories:

• Malware which has been mutated prior to distribu-
tion to a victim, generating a unique variant;

• Legitimate software applications which have their
internal contents fixed up or JITted during instal-
lation or at the time of first launch. For example,
Microsoft’s .NET programs are JITted by the .NET
runtime to optimize performance; this JITting pro-
cess can result in di↵erent versions of a baseline
executable being generated on di↵erent machines.

For the files that are highly prevalent, we store only
the first 200,000 machine IDs associated with those files.

Bipartite Graph of Machines & Files: We gener-
ated an undirected, unweighted bipartite machine-file
graph from the raw data, with almost 1 billion nodes
and 37 billion edges (37,378,365,220). 48 million of the
nodes are machine nodes, and 903 million are file nodes.
An (undirected) edge connects a file to a machine that
has the file. All edges are unweighted; at most one edge
connects a file and a machine. The graph is stored on
disk as a binary file using the adjacency list format,
which spans over 200GB.

Figure 4: Inferring file goodness through incorporating
(a) domain knowledge and intuition, and (b) other
files’ goodness through their influence on associated
machines.

4 Proposed Method: the Polonium Algorithm.

In this section, we present the Polonium algorithm for
detecting malware. We begin by describing the malware
detection problem and enumerating the pieces of helpful
domain knowledge and intuition for solving the problem.

4.1 Problem Description.

Our Data: We have a billion-node graph of machines
and files, and we want to label the files node as good

or bad, along with a measure of confidence in those
dispositions. We may treat each file as a random
variable X 2 {x

g

, x
b

}, where x
g

is the good label (or
class) and x

b

is the bad label. The file’s goodness and
badness can then be expressed by the two probabilities
P (x

g

) and P (x
b

) respectively, which sum to 1.

Goal: We want to find the marginal probability
P (X

i

= x
g

), or goodness, for each file i. Note that as
P (x

g

) and P (x
b

) sum up to one, knowing the value of
one automatically tells us the other.

4.2 Domain Knowledge & Intuition. For each
file, we have the following pieces of domain knowledge
and intuition, and we would like to use them to help
infer the file’s goodness, as depicted in Figure 4a.

Machine Reputation: A reputation score has been
computed for each machine based on a proprietary
formula that takes into account multiple anony-
mous aspects of the machine’s usage and behavior.
The score is a value between 0 and 1. Intuitively,
we expect files associated with a good machine to
be more likely to be good.

File Goodness Intuition: Good files typically ap-
pear on many machines and bad files appear on
few machines.

Homophilic Machine-File Relationships. We
expect that good files are more likely to appear on
machines with good reputation and bad files more
likely to appear on machines with low reputation.

In other words, the machine-file relationships can
be assumed to follow homophily.

File Ground Truth: We maintain a ground truth

database that contains large number of known-good
and known-bad files, some of which exist in our
graph. We can leverage the labels of these files to
infer those of the unknowns. The ground truth files
influence their associated machines which indirectly
transfer that influence to the unknown files. This
intent is depicted in Figure 4b.

The attributes mentioned above are just a small
subset of the vast number of machine- and file-based
attributes we have analyzed and leveraged to protect
users from security threats.

4.3 Formal Problem Definition After explaining
our goal and information we are equipped with to detect
malware, now we formally state the problem as follows.
Given:

• An undirected graph G = (V,E) where the nodes V
correspond to the collection of files and machines
in the graph, and the edges E correspond to the
associations among the nodes.

• Binary class labels X 2 {x
g

, x
b

} defined over V

• Domain knowledge that helps infer class labels

Output: Marginal probability P (X
i

= x
g

), or good-
ness, for each file.

Our goal task of computing the goodness for each
file over the billion-node machine-file graph is an NP-
hard inference task [21]. Fortunately, the Belief Propa-
gation algorithm (BP) has been proven very successful
in solving inference problems over graphs in various do-
mains (e.g., image restoration, error-correcting code).
We adapted the algorithm for our problem, which was
a non-trivial process, as various components used in the
algorithm had to be fine tuned; more importantly, as we
shall explain, modification to the algorithm was needed
to induce iterative improvement in file classification.

At the high level, the algorithm infers the label
of a node from some prior knowledge about the node,
and from the node’s neighbors. This is done through
iterative message passing between all pairs of nodes v

i

and v
j

. Let m
ij

(x
j

) denote the message sent from i to
j. Intuitively, this message represents i’s opinion about
j’s likelihood of being in class x

j

. The prior knowledge
about a node i, or the prior probabilities of the node
being in each possible class are expressed through the
node potential function �(x

i

), which we shall discuss
shortly. This prior probability is also called a prior.

At the end of the procedure, each file’s goodness
is determined. This goodness is an estimated marginal
probability, and is also called belief, or formally b

i

(x
i

)
(⇡ P (x

i

)), which we can threshold into one of the binary
classes. For example, using a threshold of 0.5, if the file
belief falls below 0.5, the file is considered bad.

In details, messages are obtained as follows. Each
edge e

ij

is associated with messagesm
ij

(x
j

) andm
ji

(x
i

)
for each possible class. Provided that all messages are
passed in every iteration, the order of passing can be
arbitrary. Each message vector m

ij

is normalized over
j (node j is the message’s recipient), so that it sums to
one. Normalization also prevents numerical underflow
(or zeroing-out values). Each outgoing message from
a node i to a neighbor j is generated based on the
incoming messages from the node’s other neighbors.
Mathematically, the message-update equation is:

m
ij

(x
j

)
X

xi2X

� (x
i

)
ij

(x
i

, x
j

)
Y

k2N(i)\j

m
ki

(x
i

)

where N (i) is the set of nodes neighboring node i, and

ij

(x
i

, x
j

) is called the edge potential ; intuitively, it is
a function that transforms a node’s incoming messages
into the node’s outgoing ones. Formally,

ij

(x
i

, x
j

)
equals the probability of a node i being in class x

i

given
that its neighbor j is in class x

j

. We shall explain how
this function is tailored to our problem.

The algorithm stops when the beliefs converge
(within some threshold; 10�5 is commonly used), or a
maximum number of iterations has finished. Although
convergence is not guaranteed theoretically for general
graphs (except for trees), the algorithm often converges
quickly in practice. When the algorithm ends, the node
beliefs are determined as follows:

b
i

(x
i

) = k� (x
i

)
Y

xj2N(i)

m
ji

(x
i

)

where k is a normalizing constant.

4.4 The Polonium Adaptation of Belief Propa-
gation (BP). Now, we explain how we solve the chal-
lenges of incorporating domain knowledge and intuition
to achieve our goal of detecting malware. Succinctly, we
can map our domain knowledge and intuition to BP’s
components (or functions) as follows.

Machine-File Relationships ! Edge Potential
We convert our intuition about the machine-file
homophilic relationship into the edge potential

shown in Figure 5, which indicates that a good
file is slightly more likely to be associated with
a machine with good reputation than with a low-
reputation one. (Similarly for bad file.) ✏ is a small

ij

(x
i

, x
j

) x
i

= good x
i

= bad
x
j

= good 0.5 + ✏ 0.5� ✏
x
j

= bad 0.5� ✏ 0.5 + ✏

Figure 5: Edge potentials indicating homophilic
machine-file relationship. We choose ✏ = 0.001 to pre-
serve minute probability di↵erences

value (we chose 0.001), so that the fine di↵erences
between probabilities can be preserved.

Machine Reputation ! Machine Prior
The node potential function for machine nodes
maps each machine’s reputation score into the
machine’s prior, using an exponential mapping (see
Figure 6a) of the form

machine prior = e�k⇥reputation

where k is a numerical constant internally deter-
mined based on domain knowledge.

File Goodness Intuition ! Unknown-File Prior
Similarly, we use another node potential function to
set the file prior by mapping the intuition that files
that have appeared on many machines (i.e., files
with high prevalence) are typically good. Figure
6b shows such a mapping.

File Ground Truth ! Known-File Prior
For known-good files, we set their priors to 0.99.
For known-bad, we use 0.01.

4.5 Modifying the File-to-Machine Propaga-
tion. In standard Belief Propagation, messages are
passed along both directions of an edge. That is, an
edge is associated with a machine!file message, and a
file!machine message.

We explained in Section 4 that we use the ho-
mophilic edge potential (see Figure 5) to propagate ma-
chine reputations to a file from its associated machines.

Figure 6: (a) Machine Node Potential (b) File Node
Potential

Theoretically, we could also use the same edge poten-
tial function for propagating file reputation to machines.
However, as we tried through numerous experiments —
varying the ✏ parameter, or even “breaking” the ho-
mophily assumption — we found that machines’ inter-
mediate beliefs were often forced to changed too signif-
icantly, which led to an undesirable chain reaction that
changes the file beliefs dramatically as well, when these
machine beliefs were propagated back to the files. We
hypothesized that this is because a machine’s reputa-
tion (used in computing the machine node’s prior) is a
reliable indicator of machine’s beliefs, while the reputa-
tions of the files that the machine is associated with are
weaker indicators. Following this hypothesis, instead of
propagating file reputation directly to a machine, we
pass it to the formula used to generate machine rep-
utation, which re-compute a new reputation score for
the machine. Through experiments discussed in Sec-
tion 5, we show that this modification leads to iterative
improvement of file classification accuracy.

In summary, the key idea of the Polonium algorithm
is that it infers a file’s goodness by looking at its
associated machines’ reputations iteratively. It uses
all files’ current goodness to adjust the reputation
of machines associated with those files; this adjusted
machine reputation, in turn, is used for re-inferring the
files’ goodness.

5 Empirical Evaluation.

In this section, we show that the Polonium algorithm is
scalable and e↵ective at iteratively improving accuracy
in detecting malware. We evaluated the algorithm with
the bipartite machine-file graph constructed from the
raw file submissions data collected during a three year
period, from 2007 to early 2010 (as described in Section
3). The graph consists of about 48 million machine
nodes and 903 million file nodes. There are 37 billion
edges among them, creating the largest network of its
type ever constructed or analyzed to date.

All experiments that we report here were run on a
64Bit Linux machine (Red Hat Enterprise Linux Server
5.3) with 4 Opteron 8378 Quad Core Processors (16
cores at 2.4 GHz), 256GB of RAM, 1 TB of local storage,
and 60+ TB of networked storage.

One-tenth of the ground truth files were used for
evaluation, and the rest were used for setting file pri-
ors (as “training” data). All TPRs (true positive rates)
reported here were measured at 1% FPR (false posi-
tive rate), a level deemed acceptable for our evaluation.
Symantec uses myriads of malware detection technolo-
gies; false positives from Polonium can be rectified by
those technologies, eliminating most, if not all, of them.
Thus, the 1% FPR used here only refers to that of Polo-

Figure 7: True positive rate and false positive rate for
files with prevalence 4 and above.

nium, and is independent of other technologies.

5.1 Single-Iteration Results. With one iteration,
the algorithm attains 84.9% TPR, for all files with
prevalence 4 or above1, as shown in Figure 7. To create
the smooth ROC curve in the figure, we generated
10,000 threshold points equidistant in the range [0, 1]
and applied them on the beliefs of the files in the
evaluation set, such that for each threshold value, all
files with beliefs above that value are classified as good,
or bad otherwise. This process generates 10,000 pairs of
TPR-FPR values; plotting and connecting these points
gives us the smooth ROC curve as shown in Figure 7.

We evaluated on files whose prevalence is 4 or
above. For files with prevalence 2 or 3, the TPR
was only 48% (at 1% FPR), too low to be usable
in practice. For completeness, the overall TPR for
all files with prevalence 2 and higher is 77.1%. It is
not unexpected, however, that the algorithm does not
perform as e↵ectively for low-prevalence files, because
a low-prevalence file is associated with few machines.
Mildly inaccurate information from these machines can
a↵ect the low-prevalence file’s reputation significantly
more so than that of a high-prevalence one. We intend
to combine this technology with other complementary
ones to tackle files in the full spectrum of prevalence.

5.2 Multi-Iteration Results. The Polonium algo-
rithm is iterative. After the first iteration, which at-
tained a TPR of 84.9%, we saw a further improve-
ment of about 2.2% over the next six iterations (see
Figure 8), averaging at 0.37% improvement per itera-

1
As discussed in Section 3, a file’s prevalence is the number

of machines that have reported it. (e.g., a file of prevalence five

means it was reported by five machines.)

Figure 8: ROC curves of 7 iterations; true positive rate
incrementally improves.

tion, where initial iterations’ improvements are gener-
ally more than the later ones, indicating a diminish-
ing return phenomenon. Since the baseline TPR at the
first iteration is already high, these subsequent improve-
ments represent some encouraging results.

5.2.1 Iterative Improvements. In Table 9, the
first row shows the TPRs from iteration 1 to 7, for
files with prevalence 4 or higher. The corresponding
(zoomed-in) changes in the ROC curves over iterations
is shown in Figure 8.

Iteration

Prev. 1 2 3 4 5 6 7 %"
� 4 84.9 85.5 86.0 86.3 86.7 86.9 87.1 2.2

� 8 88.3 88.8 89.1 89.5 89.8 90.0 90.1 1.8

� 16 91.3 91.7 92.1 92.3 92.4 92.6 92.8 1.5

� 32 92.1 92.9 93.3 93.5 93.7 93.9 93.9 1.8

� 64 90.1 90.9 91.3 91.6 91.9 92.1 92.3 2.2

� 128 90.4 90.7 91.4 91.6 91.7 91.8 91.9 1.5

� 256 89.8 90.7 91.1 91.6 92.0 92.5 92.5 2.7

Figure 9: True positive rate (TPR, in %) in detecting
malware incrementally improves over 7 iterations, across
the file prevalence spectrum. Each row in the table
corresponds to a range of file prevalence shown in the
leftmost column (e.g., � 4, � 8). The rightmost column
shows the absolute TPR improvement after 7 iterations.

We hypothesized that this improvement is limited
to very-low-prevalence files (e.g., 20 or below), as we be-
lieved their reputations would be more easily influenced
by incoming propagation than high-prevalence files. To
verify this hypothesis, we gradually excluded the low-
prevalence files, starting with the lowest ones, and ob-
served changes in TPR. As shown in Table 9, even after

excluding all files below 32 prevalence, 64, 128 and 256,
we still saw improvements of more than 1.5% over 6 it-
erations, disproving our hypothesis. This indicate, to
our surprise, that the improvements happen across the
prevalence spectrum.

To further verify this, we computed the eigenvector
centrality of the files, a well-known centrality measure
defined as the principal eigenvector of a graph’s adja-
cency matrix. It describes the “importance” of a node;
a node with high eigenvector centrality is considered
important, and it would be connected to other nodes
that are also important. Many other popular measures,
e.g., PageRank [11], are its variants. Figure 10 plots the
file reputation scores (computed by Polonium) and the
eigenvector centrality scores of the files in the evalua-
tion set. Each point in the figure represents a file. We
have zoomed in to the lower end of the centrality axis
(vertical axis); the upper end (not shown) only consists
of good files with reputations close to 1.

At the plot’s upper portion, high centrality scores
have been assigned to many good files, and at the
lower portion, low scores are simultaneously assigned
to many good and bad files. This tells us two things:
(1) Polonium can classify most good files and bad files,
whether they are “important” (high centrality), or less
so (low centrality); (2) eigenvector centrality alone is
unsuitable for spotting bad files (which have similar
scores as many good files), as it only considers nodal
“importance” but does not use the notion of good and
bad like Polonium does.

5.2.2 Goal-Oriented Termination. An important
improvement of the Polonium algorithm over Belief
Propagation is that it uses a goal-oriented termination
criterion—the algorithm stops when the TPR no longer

Figure 10: File reputation scores versus eigenvector

centrality scores for files in the evaluation set.

increases (at the preset 1% FPR). This is in contrast to
Belief Propagation’s conventional convergence-oriented
termination criterion. In our premise of detecting
malware, the goal-oriented approach is more desirable,
because our goal is to classify software into good or
bad, at as high of a TPR as possible while maintaining
low FPR — the convergence-oriented approach does
not promise this; in fact, node beliefs can converge,
but to undesirable values that incur poor classification
accuracy. We note that in each iteration, we are trading
FPR for TPR. That is, boosting TPR comes with a cost
of slightly increasing FPR. When the FPR is higher
than desirable, the algorithm stops.

5.3 Scalability. We ran the Polonium algorithm on
the complete bipartite graph with 37 billion edges. Each
iteration took about 3 hours to complete on average
(⇠185min). The algorithm scales linearly with the
number of edges in the graph (O(|E|)), thanks to its
adaptation of the Belief Propagation algorithm. We
empirically evaluated this by running the algorithm on
the full graph of over 37 billion edges, and on its smaller
billion-edge subgraphs with around 20B, 11.5B, 4.4B
and 0.7B edges. We plotted the per-iteration running
times for these subgraphs in Figure 11, which shows that
the running time empirically achieved linear scale-up.

5.4 Design and Optimizations. We implemented
two optimizations that dramatically reduce both run-
ning time and storage requirement.

The first optimization eliminates the need to store
the edge file in memory, which describes the graph
structure, by externalizing it to disk. The edge file alone
is over 200GB. We were able to do this only because
the Polonium algorithm did not require random access
to the edges and their associated messages; sequential
access was su�cient. This same strategy may not apply
readily to other algorithms.

Figure 11: Scalability of Polonium. Running time per
iteration is linear in the number of edges.

Figure 12: Illustration of our optimization for the
Polonium algorithm: since we have a bipartite graph
(of files and machines), the naive version leads to
two independent but equivalent paths of propagation
of messages (orange, and blue arrows). Eliminating one
path saves us half of the computation and storage for
messages, with no loss of accuracy.

The second optimization exploits the fact that the
graph is bipartite (of machines and files) to reduce
both the storage and computation for messages by
half [29]. We briefly explains this optimization here.
Let B

M

[i, j](t) be the matrix of beliefs (for machine
i and state j), at time t, and similarly B

F

[i, j](t) for
the matrix of beliefs for the files. Because the graph is
bipartite, we have

B
M

[i, j](t) = B
F

[i0, j0](t� 1)(5.1)

B
F

[i0, j0](t) = B
M

[i, j](t� 1)(5.2)

In short, the two equations are completely decoupled,
as indicated by the orange and blue edges in Figure 12.
Either stream of computations will arrive at the same
results, so we can choose to use either one (say following
the orange arrows), eventually saving half of the e↵ort.

6 Significance and Impact.

In August 2010, the Polonium technology was deployed,
joining Symantec’s other malware detection technolo-
gies to protect computer users from malware. Polonium
now serves 120 million people around the globe (at the
end of September 2010). It has helped answer more
than one trillion queries for file reputation.

Polonium’s e↵ectiveness in the field has been
empirically measured by security experts at Symantec.
They sampled live streams of files encountered by
computer users, manually analyzed and labeled the files,
then compared their expert verdicts with those given by
Polonium. They concluded that Polonium significantly
lifted the detection rate of a collection of existing
proprietary methods by 10 absolute percentage points
(while maintaining a false positive rate of 1%). This in-
the-field evaluation is di↵erent from that performed over
ground-truth data (described in Section 5), in that the

files sampled (in the field) better exemplify the types
of malware that computer users around the globe are
currently exposed to.

Our work provided concrete evidence that Polonium
works well in practice, and it has the following signifi-
cance for the software security domain:

1. It radically transforms the important problem of
malware detection, typically tackled with conven-
tional signature-based methods, into a large-scale
inference problem.

2. It exemplifies that graph mining and inference al-
gorithms, such as our adaptation of Belief Propa-
gation, can e↵ectively unearth malware.

3. It demonstrates that our method’s detection e↵ec-
tiveness can be carried over from large-scale “lab
study” to real tests “in the wild”.

7 Discussion.

Handling the Influx of Data. The amount of raw
data that Polonium works with has almost doubled
over the course of about 8 months, now exceeding 110

terabytes. Fortunately, Polonium’s time- and space-
complexity both scale linearly in the number of edges.
However, we may be able to further reduce these
requirements by applying existing research. Gonzalez
et. al [30] have developed a parallelized version of
Belief Propagation that runs on a multi-core, shared-
memory framework, which unfortunately precludes us
from readily applying it on our problem, as our current
graph does not fit in memory.

Another possibility is to concurrently run multiple
instances of our algorithm, one on each component
of our graph. To test this method, we implemented
a single-machine version of the connected component

algorithm [31] to find the components in our graph,
whose distribution (size versus count) is shown in
Figure 13; it follows the Power Law, echoing findings
from previous research that studied million- and billion-
node graphs [31, 32]. We see one giant component of
almost 950 million nodes (highlighted in red), which
accounts for 99.77% of the nodes in our graph. This
means our prospective strategy of running the algorithm
on separate components will only save us very little
time, if any at all! It is, however, not too surprising that
such a giant component exists, because most Windows
computers uses similar subset of system files, and there
are many popular applications that many of our users
may use (e.g., web browsers). These high-degree files
connect machines to form the dominant component.

Recent research in using multi-machine architec-
tures (e.g., Apache Hadoop) as a scalable data mining

Figure 13: Component distribution of our file-machine
bipartite graph, in log-log scale.

and machine learning platform [31, 33] could be a vi-
able solution to our rapidly increasing data size; the
very recent work by Kang et. al [33] that introduced
the Hadoop version of Belief Propagation is especially
applicable.

Perhaps, the simplest way to obtain the most
substantial saving in computation time would be to
simply run the algorithm for one iteration, as hinted
by the diminishing return phenomenon observed in out
multi-iteration results (in Section 5). This deliberate
departure from running the algorithm until convergence
inspires the optimization method that we discuss below.

Incremental Update of File & Machine Reputa-
tion. Ideally, Polonium will need to e�ciently handle
the arrival of new files and new machines, and it should
be able to determine any file’s reputation, whenever it is
queried. The main idea is to approximate the file rep-
utation, for fast query-time response, and replace the
approximation with a more accurate value after a full
run of the algorithm. Machine reputations can be up-
dated in a similar fashion. The approximation depends
on the maturity of a file. Here is one possibility:

Germinating. For a new file never seen before, or one
that has only been reported by very few machines
(e.g., fewer than 5), the Polonium algorithm would
flag its reputation as “unknown” since there is too
little information.

Maturing. As more machines report the file, Polo-
nium starts to approximate the file’s reputation
through aggregating the reporting machines’ rep-
utations with one iteration of machine-to-file prop-
agation; the approximation becomes increasingly
accurate over time, and eventually stabilizes.

Ripening. When a file’s reputation is close to stabi-

lization, which can be determined statistically or
heuristically, Polonium can “freeze” this reputa-
tion, and avoid recomputing it, even if new reports
arrive. Future queries about that file will simply
require looking up its reputation.

The NetProbe system [19], which uses Belief Prop-
agation to spot fraudsters and accomplices on auction
websites, used a similar method to perform incremen-
tal updates — the major di↵erence is that we use a
smaller induced subgraph consisting of a file and its di-
rect neighbors (machines), instead of the 3-hop neigh-
borhood used by NetProbe, which will include most of
the nodes in our highly connected graph.

8 Future Work.

Using More Features. In this work, we only use
a subset of all the data contributed by our users;
similarly, the attributes mentioned in this paper are just
a small subset of the vast number of machine- and file-
based attributes that we have analyzed and leveraged to
protect the users from security threats. By considering
more attributes, we may obtain even better malware
detection e�cacy.

Weighing in File Prevalence and Correlation.
All files are currently treated equally, no matter what
their prevalence is. However, in reality, the cost of
wrongly labeling a high-prevalence good file as bad
has significantly higher cost than mislabeling a low-
prevalence one. We may exploit the fact that some
files (or applications) commonly exist together on a
computer, to better estimate the reputations for these
groups of files; alternative evaluation may then be
performed at the group level, in addition to the current
file level.

9 Conclusions.

In this paper, we motivated the need for alternative
approaches to the classic problem of malware detection.
We transformed it into a large-scale graph mining
and inference problem, and we proposed the fast and
scalable Polonium algorithm to solve it. Our goals
were to infer the reputations of any files that computer
users may encounter, and identify the ones with poor
reputation (i.e., malware).

We performed a large-scale evaluation of our
method over a real machine-file graph with one bil-
lion nodes and 37 billion edges constructed from the
largest anonymized file submissions dataset ever pub-
lished, spanning over 60 terabytes of disk space. The
results showed that Polonium attained a high true pos-
itive rate of 87.1% TPR, at 1% FPR. We also verified

Polonium’s e↵ectiveness in the field; it has substantially
lifted the detection rate of a collection of existing pro-
prietary methods by 10 absolute percentage points.

We detailed important design and implementation
features of our method, and we also discussed methods
that could further speed up the algorithm and enable it
to incrementally compute reputation for new files.

We believe our work is of considerable significance
to the software security domain as it has demonstrated
that the classic malware detection problem may be
approached vastly di↵erently, and could potentially be
solved more e↵ectively and e�ciently; we o↵er Polonium
as a promising solution. We also believe our work
has brought great impact to computer users around
the world, better protecting them from the harm of
malware. Polonium is now serving 120 million people,
at the time of writing. It has helped answer more than
one trillion queries for file reputation.

10 Acknowledgements.

Duen Horng Chau was supported by the Symantec
Research Labs Graduate Fellowship 2009–2010. We
thank the many developers and engineers at Symantec
who implemented and tested Polonium for production
use. In particular, we thank Zulfikar Ramzan, Adam
Bromwich, Vijay Seshadri and Daniel Asheghian for
their helpful comments and suggestions. This material
is based upon work supported by the National Science
Foundation under Grants No. CNS-0721736 This work
is also partially supported by an IBM Faculty Award.
Any opinions, findings, and conclusions or recommen-
dations expressed in this material are those of the au-
thor(s) and do not necessarily reflect the views of the
National Science Foundation, or other funding parties.

References

[1] Symantec. (2008, April) Symantec internet
security threat report. [Online]. Available:
http://eval.symantec.com/mktginfo/enterprise/
white papers/b-whitepaper internet security threat
report xiii 04-2008.en-us.pdf

[2] N. Weaver, V. Paxson, S. Staniford, and R. Cunning-
ham, “A taxonomy of computer worms,” in Proceedings
of the 2003 ACM workshop on Rapid Malcode. ACM
New York, NY, USA, 2003, pp. 11–18.

[3] M. Christodorescu, S. Jha, S. Seshia, D. Song, and
R. Bryant, “Semantics-Aware Malware Detection,” in
Proceedings of the 2005 IEEE Symposium on Security
and Privacy. IEEE Computer Society, 2005, p. 46.

[4] Symantec. Malware definition. [Online]. Avail-
able: www.symantec.com/norton/security response/
malware.jsp

http://eval.symantec.com/mktginfo/enterprise/white_papers/b-whitepaper_internet_security_threat_report_xiii_04-2008.en-us.pdf
http://eval.symantec.com/mktginfo/enterprise/white_papers/b-whitepaper_internet_security_threat_report_xiii_04-2008.en-us.pdf
http://eval.symantec.com/mktginfo/enterprise/white_papers/b-whitepaper_internet_security_threat_report_xiii_04-2008.en-us.pdf
www.symantec.com/norton/security_response/malware.jsp
www.symantec.com/norton/security_response/malware.jsp

[5] N. Idika and A. P. Mathur, “A Survey of Malware De-
tection Techniques,” Department of Computer Science,
Purdue University, Tech. Rep., 2007.

[6] M. Siddiqui, M. C. Wang, and J. Lee, “A survey of
data mining techniques for malware detection using file
features,” in ACMSE ‘08. New York, NY, USA: ACM,
2008, pp. 509–510.

[7] J. Kephart and W. Arnold, “Automatic extraction
of computer virus signatures,” in 4th Virus Bulletin
International Conference, 1994, pp. 178–184.

[8] M. Schultz, E. Eskin, E. Zadok, and S. Stolfo, “Data
mining methods for detection of new malicious executa-
bles,” in IEEE Symposium on Security and Privacy.
IEEE COMPUTER SOCIETY, 2001, pp. 38–49.

[9] G. Tesauro, J. Kephart, and G. Sorkin, “Neural net-
works for computer virus recognition,” IEEE expert,
vol. 11, no. 4, pp. 5–6, 1996.

[10] J. Kolter and M. Maloof, “Learning to detect and
classify malicious executables in the wild,” The Journal
of Machine Learning Research, vol. 7, p. 2744, 2006.

[11] S. Brin and L. Page, “The anatomy of a large-scale
hypertextual Web search engine,” Computer networks
and ISDN systems, vol. 30, no. 1-7, pp. 107–117, 1998.

[12] J. Kleinberg, “Authoritative sources in a hyperlinked
environment,” Journal of the ACM (JACM), vol. 46,
no. 5, pp. 604–632, 1999.

[13] Z. Gyongyi, H. Garcia-Molina, and J. Pedersen, “Com-
bating web spam with trustrank,” in VLDB ‘04.
VLDB Endowment, 2004, p. 587.

[14] H. Tong, C. Faloutsos, B. Gallagher, and T. Eliassi-
Rad, “Fast best-e↵ort pattern matching in large at-
tributed graphs,” in SIGKDD ‘07. ACM, 2007, p.
746.

[15] X. Zhu, “Semi-supervised learning with graphs,” 2005.
[16] J. Neville and D. Jensen, “Collective Classification

with Relational Dependency Networks,” in Workshop
on Multi-Relational Data Mining (MRDM-2003), p. 77.

[17] O. Neville, J. and şimşek, D. Jensen, J. Komoroske,
K. Palmer, and H. Goldberg, “Using relational knowl-
edge discovery to prevent securities fraud,” in SIGKDD
‘05. ACM, 2005, p. 458.

[18] M. Christodorescu, S. Jha, and C. Kruegel, “Mining
specifications of malicious behavior,” in Proceedings of
the the 6th joint meeting of the European software engi-
neering conference and the ACM SIGSOFT symposium
on The foundations of software engineering. ACM,
2007, pp. 5–14.

[19] S. Pandit, D. H. Chau, S. Wang, and C. Faloutsos,
“Netprobe: a fast and scalable system for fraud detec-
tion in online auction networks,” in WWW ‘07. New
York, NY, USA: ACM, 2007, pp. 201–210.

[20] M. McGlohon, S. Bay, M. Anderle, D. Steier, and
C. Faloutsos, “SNARE: a link analytic system for graph
labeling and risk detection,” in SIGKDD ‘09. ACM
New York, NY, USA, 2009, pp. 1265–1274.

[21] J. Yedidia, W. Freeman, and Y. Weiss, “Understanding
belief propagation and its generalizations,” Exploring
artificial intelligence in the new millennium, vol. 8, pp.

236–239, 2003.
[22] R. Behrman and K. Carley, “Modeling the structure

and e↵ectiveness of intelligence organizations: Dy-
namic information flow simulation.” in Proceedings of
the 8th International Command and Control Research
and Technology Symposium., 2003. [Online]. Avail-
able: http://www.casos.cs.cmu.edu/publications/
papers/behrman 2003 modelingstructure.pdf

[23] S. A. Macskassy and F. Provost, “Suspicion scoring
based on guilt-by-association, collective inference, and
focused data access.” in Proceedings of the NAACSOS
Conference, June 2005.

[24] X. Yan and J. Han, “gspan: Graph-based substructure
pattern mining,” in ICDM ‘02. Washington, DC,
USA: IEEE Computer Society, 2002, p. 721.

[25] W. Wang, C. Wang, Y. Zhu, B. Shi, J. Pei, X. Yan,
and J. Han, “Graphminer: a structural pattern-mining
system for large disk-based graph databases and its
applications,” in SIGMOD ‘05. ACM, 2005, p. 881.

[26] J. Pei, D. Jiang, and A. Zhang, “On mining cross-graph
quasi-cliques,” in SIGKDD ‘05. ACM, 2005, p. 238.

[27] X. Yan, X. Zhou, and J. Han, “Mining closed relational
graphs with connectivity constraints,” in SIGKDD ‘05.
ACM, 2005, p. 333.

[28] Z. Zeng, J. Wang, L. Zhou, and G. Karypis, “Coherent
closed quasi-clique discovery from large dense graph
databases,” in SIGKDD ‘06. ACM, 2006, p. 802.

[29] P. Felzenszwalb and D. Huttenlocher, “E�cient belief
propagation for early vision,” International journal of
computer vision, vol. 70, no. 1, pp. 41–54, 2006.

[30] J. Gonzalez, Y. Low, and C. Guestrin, “Residual
splash for optimally parallelizing belief propagation.”
AISTATS, 2009.

[31] U. Kang, C. Tsourakakis, and C. Faloutsos, “PEGA-
SUS: A Peta-Scale Graph Mining System,” in ICDM
‘09. IEEE, 2009, pp. 229–238.

[32] M. Mcglohon, L. Akoglu, and C. Faloutsos, “Weighted
graphs and disconnected components: Patterns and a
generator,” in ACM Special Interest Group on Knowl-
edge Discovery and Data Mining (SIG-KDD), August
2008.

[33] U. Kang, D. Chau, and C. Faloutsos, “Inference of
beliefs on billion-scale graphs,” The 2nd Workshop on
Large-scale Data Mining: Theory and Applications,
2010.

http://www.casos.cs.cmu.edu/publications/papers/behrman_2003_modelingstructure.pdf
http://www.casos.cs.cmu.edu/publications/papers/behrman_2003_modelingstructure.pdf

	1 Introduction and Motivation.
	2 Background and Our Differences.
	2.1 Research in Malware Detection.
	2.2 Research in Graph Mining.

	3 Data Description.
	4 Proposed Method: the Polonium Algorithm.
	4.1 Problem Description.
	4.2 Domain Knowledge & Intuition.
	4.3 Formal Problem Definition
	4.4 The Polonium Adaptation of Belief Propagation (BP).
	4.5 Modifying the File-to-Machine Propagation.

	5 Empirical Evaluation.
	5.1 Single-Iteration Results.
	5.2 Multi-Iteration Results.
	5.2.1 Iterative Improvements.
	5.2.2 Goal-Oriented Termination.

	5.3 Scalability.
	5.4 Design and Optimizations.

	6 Significance and Impact.
	7 Discussion.
	8 Future Work.
	9 Conclusions.
	10 Acknowledgements.

