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Polo Club

of
DATA SCIENCE

Scalable. Interactive. Interpretable.

At Georgia Tech, we innovate scalable, interactive, and interpretable tools
that amplify human's ability to understand and interact with billion-scale
data and machine learning models. Our current research thrusts: human-

centered Al (interpretable, fair, safe Al; adversarial ML); large graph
visualization and mining; cybersecurity; and social good (health, energy).



At Georgia Tech, | teach

Data & Visual Analytics
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L esson 1

You (likely) need to learn
many things.

Why”? Complexity of datasets and problems.



What are the “ingredients”?

Need to think (a lot) about: storage, complex

system design, scalability of algorithms,
visualization techniques, interaction techniques,

statistical tests, etc.



Good news! Many jobs!

Most companies looking for “data scientists”

The data scientist role is critical for organizations
looking to extract insight from information assets for
‘big data’ initiatives and requires a broad combination
of skills that may be fulfilled better as a team

- Gartner s garercomi-giossanyata-scienisy

Breadth of knowledge Is important.


http://www.gartner.com/it-glossary/data-scientist
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IN THE 21ST CENTURY , we live a large part of our lives
online. Almost everything we do is reduced to bits and sent
through cables around the world at light speed. But just
how much data are we generating? This is a look at just
some of the massive amounts of information that human
beings create every single day.

http://spanning.com/blog/choosing-between-storage-based-and-unlimited-storage-for-cloud-data-backup/



Lesson 2

Learn data science concepts and
key generalizable techniques to
future-proof yourselves.

And here’s a good book.
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A critical skill in data science is the ability to decompose a data-
analytics problem into pieces such that each piece matches a known

task for which tools are available. Recognizing familiar Eroblems and

their solutions avoids wasting time and resources reinventing the
wheel. It also allows people to focus attention on more interesting parts

of the process that require human involvement—parts that have not
been automated, so human creativity and intelligence must come in-
to play.

Cl€nce
FREE for all Georgia Tech users at fWBUSmeSS
O’'Reilly’s Safari Books Online What You Neeg g .
' Dat(:.lt Data .Mining anc;V
(and also many other data science Analytic Thipyg
related books)

http://www.amazon.com/Data-Science-
Business-data-analytic-thinking/dp/1449361323
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Great news!

Few principles!!

Data Science
Jor Business

What You Need to Know
About Data Mining and
Data-Analytic Thinking

Foster Provost & Tom Fawcett

1.
2
3.
4
5

Classification

. Regression

Similarity Matching

. Clustering

. Co-occurrence grouping

(aka frequent items mining, association rule
discovery, market-basket analysis)

Profiling

(related to pattern mining, anomaly detection)

7. Link prediction / recommendation

Data reduction
(aka dimensionality reduction)

. Causal modeling
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Lesson 3

Data are dirty.

Always have been.
And always will be.

You will like

y spend majority of your time

cleaning da

a. And -

hat’s important work!

Otherwise, garbage in, garbage out.

13



How dirty is real data?

Examples
e Jan 19, 2016
e January 19, 16
e 1/19/16
e 2006-01-19
e 19/1/16

http://blogs.verdantis.com/wp-content/uploads/2015/02/Data-cleansing.jpg
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How dirty is real data”

Examples

duplicates

empty rows

abbreviations (different kinds)

difference in scales / inconsistency in description/ sometimes include units
typos

missing values

trailing spaces

Incomplete cells

synonyms of the same thing

skewed distribution (outliers)

bad formatting / not in relational format (in a format not expected)
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“*80%” Time Spent on Data Preparation

Cleaning Big Data: Most Time-Consuming, Least

Enjoyable Data Science Task, Survey Says [Forbes]

http://www.forbes.com/sites/qilpress/2016/03/23/data-preparation-most-time-
consuming-least-enjoyable-data-science-task-survey-says/#73bf5b137f75

3% 5% What data scientists spend the most time doing

4%

® Building training sets: 3%
® (Cleaning and organizing data: 60%
® C(ollecting data sets; 19%
Mining data for patterns: 9%
® Refining algorithms: 4%
® Other: 5%



http://www.forbes.com/sites/gilpress/2016/03/23/data-preparation-most-time-consuming-least-enjoyable-data-science-task-survey-says/#73bf5b137f75
http://www.forbes.com/sites/gilpress/2016/03/23/data-preparation-most-time-consuming-least-enjoyable-data-science-task-survey-says/#73bf5b137f75

Followuson:  Github Twitter

Home
Download
Documentation
Community

Post archive

A Governance Model for
OpenRefine

Using OpenRefine: a
manual

A free, opensource, powerful tool
messy data

Welcome!

OpenRefine (formerly Google Refine) is a powerful tool for working with messy data: cleaning it; transforming it
from one format into another; extending it with web services; and linking it to databases like Freebase.

Please note that since October 2nd, 2012, Google is not actively supporting this project, which has now been
rebranded to OpenRefine. Project development, documentation and promotion is now fully supported by
volunteers. Find out more about the history of OpenRefine and how you can help the community.

Using OpenRefine - The Book

Using OpenRefine, by Ruben Verborgh and Max De Wilde, offers a great introduction
to OpenRefine. Organized by recipes with hands on examples, the book covers the
0 following topics:

. Import data in various formats

Eunlara Aatacade in A mabtbar af carande



Lesson 4

Python is a King.

Some say R is.

In practice, you may want to use the ones
that have the widest community support.
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Python

One of “big-3” programming languages at tech firms
ike Google.

o and are the other two.

—asy to write, read, run, and debug

* General programming language, tons of libraries
(e.qg., Scikit-learn, Pandas, NumPy, TensorFlow, PyTorch)

* Works well with others (a great “glue” language)

19



Lesson 5

You’ve got to know SQL and
algorithms (and Big-O)

(Even though job descriptions may not mention them.)

Why*?
(1) Many datasets stored in databases.
(2) You need to know if an algorithm can
scale to large amount of data

20



Lesson 6

Visualization is NOT only about
‘making things look pretty”

(Aesthetics is important too)

Key Is to design effective visualization to:
(1) communicate and
(2) help people gain insights

21



Why visualize data’” Why not automate”
Anscombe’s Quartet
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https://en.wikipedia.org/wiki/Anscombe%27s_quartet



Designing effective visualization Is
not hard if you learn the principles.

Easy, because...
Simple charts (bar charts, line charts, scatterplots)
are incredibly effective; handles most
practical needs!
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Designing effective visualization Is
not hard if you learn the principles.

24



Designing effective visua\izatio_n S
not hard if you learn the principles.

Charts can mislead (sometimes intentionally)

$100

* A

%0 B

U.S. SmartPhone Marketshare

21.2% 75

1%
74%

25



L esson 10

Industry moves fast.
So should you.

Be cautiously optimistic.
And be very careful of hype.

There were 2 Al winters.

https://en.wikipedia.org/wiki/History_of_artificial_intelligence

20



Lesson 11

Your soft skills can be
more Important than your

hard skills.

If people don’t understand your approach, they
won't appreciate .
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